Suppr超能文献

一种基于水下传感器网络的智能仿生自主监测系统。

An Intelligent Bio-Inspired Autonomous Surveillance System Using Underwater Sensor Networks.

作者信息

Khan Shadab, Singh Yash Veer, Yadav Prasant Singh, Sharma Vishnu, Lin Chia-Chen, Jung Ki-Hyun

机构信息

Department of Computer Science & Engineering, ABES Engineering College, Ghaziabad 201009, India.

Department of Computer Science & Engineering, Galgotias College of Engineering and Technology, Greater Noida 201310, India.

出版信息

Sensors (Basel). 2023 Sep 12;23(18):7839. doi: 10.3390/s23187839.

Abstract

Energy efficiency is important for underwater sensor networks. Designing such networks is challenging due to underwater environmental traits that hinder network lifespan extension. Unlike terrestrial protocols, underwater settings require novel protocols due to slower signal propagation. To enhance energy efficiency in underwater sensor networks, ongoing research concentrates on developing innovative solutions. Thus, in this paper, an intelligent bio-inspired autonomous surveillance system using underwater sensor networks is proposed as an efficient method for data communication. The tunicate swarm algorithm is used for the election of the cluster heads by considering different parameters such as energy, distance, and density. Each layer has several clusters, each of which is led by a cluster head that continuously rotates in response to the fitness values of the SNs using the tunicate swarm algorithm. The performance of the proposed protocol is compared with existing methods such as EE-LHCR, EE-DBR, and DBR, and results show the network's lifespan is improved by the proposed work. Due to the effective fitness parameters during cluster head elections, our suggested protocol may more effectively achieve energy balance, resulting in a longer network lifespan.

摘要

能源效率对于水下传感器网络至关重要。由于水下环境特性阻碍了网络寿命的延长,设计这样的网络具有挑战性。与陆地协议不同,由于信号传播较慢,水下环境需要新颖的协议。为了提高水下传感器网络的能源效率,正在进行的研究集中在开发创新解决方案上。因此,在本文中,提出了一种使用水下传感器网络的智能生物启发式自主监测系统,作为一种高效的数据通信方法。被囊动物群算法用于通过考虑能量、距离和密度等不同参数来选举簇头。每一层都有几个簇,每个簇由一个簇头领导,该簇头使用被囊动物群算法根据传感器节点的适应度值不断轮换。将所提出协议的性能与EE-LHCR、EE-DBR和DBR等现有方法进行了比较,结果表明所提出的工作提高了网络寿命。由于在簇头选举过程中有有效的适应度参数,我们建议的协议可以更有效地实现能量平衡,从而延长网络寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee13/10536325/21ed193df8a5/sensors-23-07839-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验