Sun Su, Li Fei, Li Muzi, Zhang Wenqian, Jiang Zhenxiong, Zhao Honglu, Pu Yunqiao, Ragauskas Arthur J, Dai Susie Y, Zhang Xiaoyu, Yu Hongbo, Yuan Joshua S, Xie Shangxian
Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China.
iScience. 2023 Sep 9;26(10):107870. doi: 10.1016/j.isci.2023.107870. eCollection 2023 Oct 20.
Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi and during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from CD2 could use diverse electron donors to produce HO, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.
尽管裂解多糖单加氧酶(LPMOs)的发现从根本上改变了我们对生物质降解的理解,但目前大多数研究都集中在它们在碳水化合物氧化中的作用。然而,没有研究证明LPMO是否能直接参与木质素降解微生物中木质素的降解过程。这项研究表明,LPMO可以与木质素降解酶协同作用,在白腐真菌中实现高效的木质素降解。对真菌在其木质纤维素生物质降解过程中的转录组学分析令人惊讶地发现,LPMOs与木质素降解酶共同调节,这表明它们在氧化还原网络中具有更广泛的作用。生化分析进一步证实,从CD2中纯化的LPMO可以使用多种电子供体产生HO,驱动芬顿反应,并与锰过氧化物酶协同作用进行木质素氧化。因此,结果表明LPMO可能独特地利用氧化还原网络实现对不同细胞壁成分的动态和高效降解。