Rmus Milena, Pan Ti-Fen, Xia Liyu, Collins Anne G E
UC Berkeley.
bioRxiv. 2024 Apr 2:2023.09.14.557793. doi: 10.1101/2023.09.14.557793.
Computational cognitive models have been used extensively to formalize cognitive processes. Model parameters offer a simple way to quantify individual differences in how humans process information. Similarly, model comparison allows researchers to identify which theories, embedded in different models, provide the best accounts of the data. Cognitive modeling uses statistical tools to quantitatively relate models to data that often rely on computing/estimating the likelihood of the data under the model. However, this likelihood is computationally intractable for a substantial number of models. These relevant models may embody reasonable theories of cognition, but are often under-explored due to the limited range of tools available to relate them to data. We contribute to filling this gap in a simple way using artificial neural networks (ANNs) to map data directly onto model identity and parameters, bypassing the likelihood estimation. We test our instantiation of an ANN as a cognitive model fitting tool on classes of cognitive models with strong inter-trial dependencies (such as reinforcement learning models), which offer unique challenges to most methods. We show that we can adequately perform both parameter estimation and model identification using our ANN approach, including for models that cannot be fit using traditional likelihood-based methods. We further discuss our work in the context of the ongoing research leveraging simulation-based approaches to parameter estimation and model identification, and how these approaches broaden the class of cognitive models researchers can quantitatively investigate.
计算认知模型已被广泛用于将认知过程形式化。模型参数提供了一种简单的方法来量化人类处理信息方式上的个体差异。同样,模型比较使研究人员能够确定不同模型中所包含的哪些理论能够最好地解释数据。认知建模使用统计工具来定量地将模型与数据联系起来,而这些数据通常依赖于计算/估计模型下数据的似然性。然而,对于大量模型来说,这种似然性在计算上是难以处理的。这些相关模型可能体现了合理的认知理论,但由于将它们与数据联系起来的可用工具范围有限,它们往往未得到充分探索。我们通过使用人工神经网络(ANN)以一种简单的方式来填补这一空白,即将数据直接映射到模型身份和参数上,从而绕过似然性估计。我们在具有强烈试验间依赖性的认知模型类别(如强化学习模型)上测试了我们将ANN实例化为认知模型拟合工具的方法,这些模型对大多数方法都提出了独特的挑战。我们表明,使用我们的ANN方法,我们能够充分地进行参数估计和模型识别,包括对于那些无法使用传统基于似然性的方法进行拟合的模型。我们还在利用基于模拟的方法进行参数估计和模型识别的正在进行的研究背景下讨论了我们的工作,以及这些方法如何拓宽了研究人员能够进行定量研究的认知模型类别。