Suppr超能文献

发展过程中强化学习计算的灵活性。

Flexibility in valenced reinforcement learning computations across development.

机构信息

Department of Psychology, New York University, New York, New York, USA.

Center for Neural Science, New York University, New York, New York, USA.

出版信息

Child Dev. 2022 Sep;93(5):1601-1615. doi: 10.1111/cdev.13791. Epub 2022 May 21.

Abstract

Optimal integration of positive and negative outcomes during learning varies depending on an environment's reward statistics. The present study investigated the extent to which children, adolescents, and adults (N = 142 8-25 year-olds, 55% female, 42% White, 31% Asian, 17% mixed race, and 8% Black; data collected in 2021) adapt their weighting of better-than-expected and worse-than-expected outcomes when learning from reinforcement. Participants made choices across two contexts: one in which weighting positive outcomes more heavily than negative outcomes led to better performance, and one in which the reverse was true. Reinforcement learning modeling revealed that across age, participants shifted their valence biases in accordance with environmental structure. Exploratory analyses revealed strengthening of context-dependent flexibility with increasing age.

摘要

在学习过程中,积极和消极结果的最佳整合取决于环境的奖励统计数据。本研究调查了儿童、青少年和成年人(N=142 名 8-25 岁的人,55%为女性,42%为白人,31%为亚洲人,17%为混血儿,8%为黑人;数据于 2021 年收集)在从强化中学习时,他们调整对好于预期和差于预期结果的权重的程度。参与者在两个情境中做出选择:一个情境中,更重视积极结果而不是消极结果会导致更好的表现;另一个情境则相反。强化学习模型显示,在整个年龄段,参与者根据环境结构改变了他们的效价偏见。探索性分析显示,随着年龄的增长,情境依赖性灵活性增强。

相似文献

1
Flexibility in valenced reinforcement learning computations across development.
Child Dev. 2022 Sep;93(5):1601-1615. doi: 10.1111/cdev.13791. Epub 2022 May 21.
4
Sensitivity to the Instrumental Value of Choice Increases Across Development.
Psychol Sci. 2024 Aug;35(8):933-947. doi: 10.1177/09567976241256961. Epub 2024 Jun 20.
5
Reinforcement learning across development: What insights can we draw from a decade of research?
Dev Cogn Neurosci. 2019 Dec;40:100733. doi: 10.1016/j.dcn.2019.100733. Epub 2019 Nov 6.
6
How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
J Neurosci. 2018 Nov 28;38(48):10338-10348. doi: 10.1523/JNEUROSCI.0457-18.2018. Epub 2018 Oct 16.
10
Acute stress impairs reward learning in men.
Brain Cogn. 2021 Feb;147:105657. doi: 10.1016/j.bandc.2020.105657. Epub 2020 Dec 17.

引用本文的文献

1
Navigating a varying reward environment in childhood and adolescence.
Sci Rep. 2025 Jul 2;15(1):22715. doi: 10.1038/s41598-025-05725-3.
2
Social Contexts Requiring Adjudication Self- and Peer-Interest Differentially Alter Risk Preferences Across Adolescence.
Open Mind (Camb). 2025 Apr 22;9:540-558. doi: 10.1162/opmi_a_00201. eCollection 2025.
3
Reinforcement learning increasingly relates to memory specificity from childhood to adulthood.
Nat Commun. 2025 Apr 30;16(1):4074. doi: 10.1038/s41467-025-59379-w.
4
Stochastic decisions support optimal foraging of volatile environments, and are disrupted by anxiety.
Cogn Affect Behav Neurosci. 2025 Jan 9. doi: 10.3758/s13415-024-01256-y.
5
Revisiting adolescence as a sensitive period for sociocultural processing.
Neurosci Biobehav Rev. 2024 Sep;164:105820. doi: 10.1016/j.neubiorev.2024.105820. Epub 2024 Jul 18.
6
Sensitivity to the Instrumental Value of Choice Increases Across Development.
Psychol Sci. 2024 Aug;35(8):933-947. doi: 10.1177/09567976241256961. Epub 2024 Jun 20.
7
Artificial neural networks for model identification and parameter estimation in computational cognitive models.
PLoS Comput Biol. 2024 May 15;20(5):e1012119. doi: 10.1371/journal.pcbi.1012119. eCollection 2024 May.
8
Probing the content of affective semantic memory following caregiving-related early adversity.
Dev Sci. 2024 Nov;27(6):e13518. doi: 10.1111/desc.13518. Epub 2024 Apr 25.
10
Expecting the unexpected: a review of learning under uncertainty across development.
Cogn Affect Behav Neurosci. 2023 Jun;23(3):718-738. doi: 10.3758/s13415-023-01098-0. Epub 2023 May 26.

本文引用的文献

1
The interpretation of computational model parameters depends on the context.
Elife. 2022 Nov 4;11:e75474. doi: 10.7554/eLife.75474.
2
Confirmatory reinforcement learning changes with age during adolescence.
Dev Sci. 2023 May;26(3):e13330. doi: 10.1111/desc.13330. Epub 2022 Oct 27.
3
Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers.
Commun Biol. 2022 Aug 12;5(1):812. doi: 10.1038/s42003-022-03690-5.
4
Computational and behavioral markers of model-based decision making in childhood.
Dev Sci. 2023 Mar;26(2):e13295. doi: 10.1111/desc.13295. Epub 2022 Jun 23.
6
Impaired learning to dissociate advantageous and disadvantageous risky choices in adolescents.
Sci Rep. 2022 Apr 20;12(1):6490. doi: 10.1038/s41598-022-10100-7.
8
What do Reinforcement Learning Models Measure? Interpreting Model Parameters in Cognition and Neuroscience.
Curr Opin Behav Sci. 2021 Oct;41:128-137. doi: 10.1016/j.cobeha.2021.06.004. Epub 2021 Jul 3.
10
A model for learning based on the joint estimation of stochasticity and volatility.
Nat Commun. 2021 Nov 15;12(1):6587. doi: 10.1038/s41467-021-26731-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验