Suppr超能文献

将等待名单上的时间累积效应纳入肺移植生存模型中。

Incorporating Effects of Time Accrued on the Waiting List into Lung Transplantation Survival Models.

机构信息

Center for Populations Health Research, Department of Quantitative Health Sciences and.

Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; and.

出版信息

Am J Respir Crit Care Med. 2023 Nov 1;208(9):983-989. doi: 10.1164/rccm.202306-0968OC.

Abstract

U.S. lung transplant mortality risk models do not account for patients' disease progression as time accrues between mandated clinical parameter updates. To investigate the effects of accrued waitlist (WL) time on mortality in lung transplant candidates and recipients beyond those expressed by worsening clinical status and to present a new framework for conceptualizing mortality risk in end-stage lung disease. Using Scientific Registry of Transplant Recipients data (2015-2020,  = 12,616), we modeled transitions among multiple clinical states over time: WL, posttransplant, and death. Using cause-specific and ordinary Cox regression to estimate trajectories of composite 1-year mortality risk as a function of time from waitlisting to transplantation, we quantified the predictive accuracy of these estimates. We compared multistate model-derived candidate rankings against composite allocation score (CAS) rankings. There were 11.5% of candidates whose predicted 1-year mortality risk increased by >10% by day 30 on the WL. The multistate model ascribed lower numerical rankings (i.e., higher priority) than CAS for those who died while on the WL (multistate mean; median [interquartile range] ranking at death, 227; 154 [57-334]; CAS median [interquartile range] ranking at death, 329; 162 [11-668]). Patients with interstitial lung disease were more likely to have increasing risk trajectories as a function of time accrued on the WL compared with other lung diagnoses. Incorporating the effects of time accrued on the WL for lung transplant candidates and recipients in donor lung allocation systems may improve the survival of patients with end-stage lung diseases on the individual and population levels.

摘要

美国肺移植死亡率风险模型并未考虑到患者在强制性临床参数更新之间的等待名单时间的累积对疾病进展的影响。本研究旨在调查肺移植候选者和受者在等待名单上的时间累积对死亡率的影响,超出了临床状态恶化所表达的影响,并提出了一个新的框架来概念化终末期肺病患者的死亡风险。利用移植受者科学注册处(2015-2020 年,n=12616)的数据,我们对多个临床状态在时间上的转变进行建模:等待名单、移植后和死亡。使用特异性和普通 Cox 回归来估计从等待名单到移植的时间作为复合 1 年死亡率风险的函数的轨迹,我们量化了这些估计的预测准确性。我们比较了多状态模型衍生的候选者排名与复合分配评分(CAS)排名。有 11.5%的候选者在等待名单上的第 30 天,其预测的 1 年死亡率风险增加了>10%。多状态模型对那些在等待名单上死亡的人赋予了比 CAS 更低的数值排名(即更高的优先级)(多状态平均值;中位数[四分位距]在死亡时的排名,227;154[57-334];CAS 中位数[四分位距]在死亡时的排名,329;162[11-668])。与其他肺部诊断相比,间质性肺疾病患者的风险轨迹随着在等待名单上的时间累积而增加的可能性更大。在供肺分配系统中纳入肺移植候选者和受者在等待名单上的时间累积的影响,可能会提高个体和人群层面终末期肺病患者的生存率。

相似文献

6
OPTN/SRTR 2016 Annual Data Report: Lung.OPTN/SRTR 2016 年度数据报告:肺。
Am J Transplant. 2018 Jan;18 Suppl 1:363-433. doi: 10.1111/ajt.14562.
10
A modular simulation framework for organ allocation.器官分配的模块化模拟框架。
J Heart Lung Transplant. 2024 Aug;43(8):1326-1335. doi: 10.1016/j.healun.2024.04.063. Epub 2024 May 4.

引用本文的文献

本文引用的文献

4
Mitigating selection bias in organ allocation models.减轻器官分配模型中的选择偏差。
BMC Med Res Methodol. 2021 Sep 21;21(1):191. doi: 10.1186/s12874-021-01379-7.
9
Restricted mean models for transplant benefit and urgency.移植获益和紧迫性的限制平均模型。
Stat Med. 2012 Mar 15;31(6):561-76. doi: 10.1002/sim.4450. Epub 2012 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验