Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH.
Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH.
Chest. 2023 Jan;163(1):152-163. doi: 10.1016/j.chest.2022.08.2217. Epub 2022 Aug 27.
As broader geographic sharing is implemented in lung transplant allocation through the Composite Allocation Score (CAS) system, models predicting waitlist and posttransplant (PT) survival will become more important in determining access to organs.
How well do CAS survival models perform, and can discrimination performance be improved with alternative statistical models or machine learning approaches?
Scientific Registry for Transplant Recipients (SRTR) data from 2015-2020 were used to build seven waitlist (WL) and data from 2010-2020 to build similar PT models. These included the (I) current lung allocation score (LAS)/CAS model; (II) re-estimated WL-LAS/CAS model; (III) model II incorporating nonlinear relationships; (IV) random survival forests model; (V) logistic model; (VI) linear discriminant analysis; and (VII) gradient-boosted tree model. Discrimination performance was evaluated at 1, 3, and 6 months on the waiting list and 1, 3, and 5 years PT. Area under the curve (AUC) values were estimated across subgroups.
WL model performance was similar across models with the greatest discrimination in the baseline cohort (AUC 0.93) and declined to 0.87-0.89 for 3-month and 0.84-0.85 for 6-month predictions and further diminished for residual cohorts. Discrimination performance for PT models ranged from AUC 0.58-0.61 and remained stable with increasing forecasting times but was slightly worse for residual cohorts. WL and PT variability in AUC was greatest for individuals with Medicaid insurance.
Use of alternative modeling strategies and contemporary cohorts did not improve performance of models determining access to lung transplant.
随着通过综合分配评分(CAS)系统在肺移植分配中实施更广泛的地理共享,预测等待名单和移植后(PT)生存的模型在确定器官获取方面将变得更加重要。
CAS 生存模型的表现如何,是否可以通过替代统计模型或机器学习方法来提高区分性能?
使用 2015-2020 年的科学移植受者登记处(SRTR)数据构建七个等待名单(WL)模型,以及 2010-2020 年的数据构建类似的 PT 模型。这些模型包括:(I)当前肺分配评分(LAS)/CAS 模型;(II)重新估计的 WL-LAS/CAS 模型;(III)纳入非线性关系的模型 II;(IV)随机生存森林模型;(V)逻辑模型;(VI)线性判别分析;和(VII)梯度提升树模型。在等待名单上分别在 1、3 和 6 个月和在 PT 上的 1、3 和 5 年进行了区分性能评估。估计了曲线下面积(AUC)值的跨亚组情况。
WL 模型的性能在各个模型之间相似,在基线队列中具有最大的区分度(AUC 0.93),并在 3 个月和 6 个月的预测中下降到 0.87-0.89,在 1 年和 3 年的预测中下降到 0.84-0.85,对于剩余队列进一步降低。PT 模型的预测范围从 AUC 0.58-0.61,随着预测时间的增加而保持稳定,但对于剩余队列略差。具有医疗补助保险的个体的 WL 和 PT AUC 变异性最大。
使用替代建模策略和当代队列并没有提高确定肺移植机会的模型的性能。