Suppr超能文献

减轻器官分配模型中的选择偏差。

Mitigating selection bias in organ allocation models.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Blockley Hall Room 107, Philadelphia, PA, 19104, USA.

Department of Surgery, Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.

出版信息

BMC Med Res Methodol. 2021 Sep 21;21(1):191. doi: 10.1186/s12874-021-01379-7.

Abstract

BACKGROUND

The lung allocation system in the U.S. prioritizes lung transplant candidates based on estimated pre- and post-transplant survival via the Lung Allocation Scores (LAS). However, these models do not account for selection bias, which results from individuals being removed from the waitlist due to receipt of transplant, as well as transplanted individuals necessarily having survived long enough to receive a transplant. Such selection biases lead to inaccurate predictions.

METHODS

We used a weighted estimation strategy to account for selection bias in the pre- and post-transplant models used to calculate the LAS. We then created a modified LAS using these weights, and compared its performance to that of the existing LAS via time-dependent receiver operating characteristic (ROC) curves, calibration curves, and Bland-Altman plots.

RESULTS

The modified LAS exhibited better discrimination and calibration than the existing LAS, and led to changes in patient prioritization.

CONCLUSIONS

Our approach to addressing selection bias is intuitive and can be applied to any organ allocation system that prioritizes patients based on estimated pre- and post-transplant survival. This work is especially relevant to current efforts to ensure more equitable distribution of organs.

摘要

背景

美国的肺分配系统通过肺分配分数(LAS)优先考虑基于移植前和移植后生存估计的肺移植候选者。然而,这些模型没有考虑选择偏差,选择偏差是由于个体因接受移植而从候补名单中删除,以及移植个体必须存活足够长的时间以接受移植而导致的。这种选择偏差导致预测不准确。

方法

我们使用加权估计策略来考虑 LAS 计算中使用的移植前和移植后模型中的选择偏差。然后,我们使用这些权重创建了一个修改后的 LAS,并通过时间依赖的接收者操作特征(ROC)曲线、校准曲线和 Bland-Altman 图比较了它与现有 LAS 的性能。

结果

修改后的 LAS 表现出比现有 LAS 更好的区分度和校准度,并导致患者优先排序的变化。

结论

我们解决选择偏差的方法是直观的,可以应用于任何基于移植前和移植后生存估计对患者进行优先排序的器官分配系统。这项工作尤其与当前确保器官更公平分配的努力相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f25/8454078/7327a11411ad/12874_2021_1379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验