Suppr超能文献

基于深度学习神经网络的 12 导联心电图心房颤动的端到端风险预测。

End-to-end risk prediction of atrial fibrillation from the 12-Lead ECG by deep neural networks.

机构信息

Department of Information Technology, Uppsala University, Sweden.

Department of Information Technology, Uppsala University, Sweden.

出版信息

J Electrocardiol. 2023 Nov-Dec;81:193-200. doi: 10.1016/j.jelectrocard.2023.09.011. Epub 2023 Sep 25.

Abstract

BACKGROUND

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias that affects millions of people each year worldwide and it is closely linked to increased risk of cardiovas- cular diseases such as stroke and heart failure. Machine learning methods have shown promising results in evaluating the risk of developing atrial fibrillation from the electrocardiogram. We aim to develop and evaluate one such algorithm on a large CODE dataset collected in Brazil.

METHODS

We used the CODE cohort to develop and test a model for AF risk prediction for individual patients from the raw ECG recordings without the use of additional digital biomarkers. The cohort is a collection of ECG recordings and annotations by the Telehealth Network of Minas Gerais, in Brazil. A convolutional neural network based on a residual network architecture was implemented to produce class probabilities for the classification of AF. The probabilities were used to develop a Cox proportional hazards model and a Kaplan-Meier model to carry out survival analysis. Hence, our model is able to perform risk prediction for the development of AF in patients without the condition.

RESULTS

The deep neural network model identified patients without indication of AF in the presented ECG but who will develop AF in the future with an AUC score of 0.845. From our survival model, we obtain that patients in the high-risk group (i.e. with the probability of a future AF case being >0.7) are 50% more likely to develop AF within 40 weeks, while patients belonging to the minimal-risk group (i.e. with the probability of a future AF case being less than or equal to 0.1) have >85% chance of remaining AF free up until after seven years.

CONCLUSION

We developed and validated a model for AF risk prediction. If applied in clinical practice, the model possesses the potential of providing valuable and useful information in decision- making and patient management processes.

摘要

背景

心房颤动(AF)是全球每年影响数百万人的最常见的心律失常之一,它与心血管疾病(如中风和心力衰竭)的风险增加密切相关。机器学习方法在从心电图评估发生心房颤动的风险方面显示出有希望的结果。我们旨在使用在巴西收集的大型 CODE 数据集开发和评估这样的算法。

方法

我们使用 CODE 队列在没有使用其他数字生物标志物的情况下,从原始心电图记录中为个体患者开发和测试用于预测 AF 风险的模型。该队列是巴西米纳斯吉拉斯远程医疗网络的心电图记录和注释的集合。我们实施了基于残差网络架构的卷积神经网络,以产生用于 AF 分类的类概率。这些概率用于开发 Cox 比例风险模型和 Kaplan-Meier 模型以进行生存分析。因此,我们的模型能够对无 AF 病症的患者进行 AF 发展风险预测。

结果

深度神经网络模型能够识别出在呈现的心电图中没有 AF 迹象但将来会发生 AF 的患者,其 AUC 得分为 0.845。从我们的生存模型中,我们得出结论,处于高风险组(即未来发生 AF 病例的概率>0.7)的患者在 40 周内发生 AF 的可能性增加 50%,而属于低风险组(即未来发生 AF 病例的概率小于或等于 0.1)的患者在七年之后仍有>85%的可能性保持无 AF。

结论

我们开发并验证了用于预测 AF 风险的模型。如果在临床实践中应用,该模型具有提供有价值和有用的信息以辅助决策和患者管理过程的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验