Suppr超能文献

通过学习将普通X射线图像分解为骨分割计算机断层扫描的投影来估计骨密度。

Bone mineral density estimation from a plain X-ray image by learning decomposition into projections of bone-segmented computed tomography.

作者信息

Gu Yi, Otake Yoshito, Uemura Keisuke, Soufi Mazen, Takao Masaki, Talbot Hugues, Okada Seiji, Sugano Nobuhiko, Sato Yoshinobu

机构信息

Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; CentraleSupélec, Université Paris-Saclay, Inria, Gif-sur-Yvette 91190, France.

Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.

出版信息

Med Image Anal. 2023 Dec;90:102970. doi: 10.1016/j.media.2023.102970. Epub 2023 Sep 15.

Abstract

Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, leading to a decline in daily living activities. Dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) are highly accurate for diagnosing osteoporosis; however, these modalities require special equipment and scan protocols. To frequently monitor bone health, low-cost, low-dose, and ubiquitously available diagnostic methods are highly anticipated. In this study, we aim to perform bone mineral density (BMD) estimation from a plain X-ray image for opportunistic screening, which is potentially useful for early diagnosis. Existing methods have used multi-stage approaches consisting of extraction of the region of interest and simple regression to estimate BMD, which require a large amount of training data. Therefore, we propose an efficient method that learns decomposition into projections of bone-segmented QCT for BMD estimation under limited datasets. The proposed method achieved high accuracy in BMD estimation, where Pearson correlation coefficients of 0.880 and 0.920 were observed for DXA-measured BMD and QCT-measured BMD estimation tasks, respectively, and the root mean square of the coefficient of variation values were 3.27 to 3.79% for four measurements with different poses. Furthermore, we conducted extensive validation experiments, including multi-pose, uncalibrated-CT, and compression experiments toward actual application in routine clinical practice.

摘要

骨质疏松症是一种常见的骨病,会导致脆弱骨骼发生骨折,进而导致日常生活活动能力下降。双能X线吸收法(DXA)和定量计算机断层扫描(QCT)在诊断骨质疏松症方面具有很高的准确性;然而,这些方法需要特殊设备和扫描协议。为了频繁监测骨骼健康状况,人们迫切期待低成本、低剂量且普遍可用的诊断方法。在本研究中,我们旨在从普通X线图像进行骨密度(BMD)估计以用于机会性筛查,这对早期诊断可能有用。现有方法采用了多阶段方法,包括感兴趣区域提取和简单回归来估计BMD,这需要大量训练数据。因此,我们提出了一种高效方法,该方法在有限数据集下学习将其分解为骨分割QCT的投影以进行BMD估计。所提出的方法在BMD估计中取得了高精度,在DXA测量的BMD估计任务和QCT测量的BMD估计任务中,皮尔逊相关系数分别为0.880和0.920,并且对于四种不同姿势的测量,变异系数值的均方根为3.27%至3.79%。此外,我们针对常规临床实践中的实际应用进行了广泛的验证实验,包括多姿势、未校准CT和压缩实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验