Suppr超能文献

阿尔茨海默病的表观基因组剖析确定了因果变异,并揭示了表观基因组的侵蚀。

Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion.

机构信息

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.

出版信息

Cell. 2023 Sep 28;186(20):4422-4437.e21. doi: 10.1016/j.cell.2023.08.040.

Abstract

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.

摘要

最近的研究已经确定了数十个与阿尔茨海默病(AD)风险相关的非编码基因座,但这些基因座的作用机制和 AD 转录调控回路仍知之甚少。在这里,我们对 92 名 AD 患者和非 AD 患者的前额叶皮层中的 85 万个细胞核进行了表观基因组和转录组特征分析,构建了大脑调控组图谱,包括以细胞类型特异性的方式呈现表观基因组图谱、转录调控因子、共可及性模块以及峰到基因的连接。我们开发了多模态整合和使用峰到基因连接检测调控模块的方法。我们发现 AD 风险基因座富集在小胶质细胞增强子上,并且与特定的转录因子(包括 SPI1、ELF2 和 RUNX1)有关。我们检测到 9628 个细胞类型特异性的 ATAC-QTL 基因座,我们将其与峰到基因的连接整合在一起,以优先考虑 AD 变异的调控回路。我们报告了在 AD 晚期的胶质细胞中以及在 AD 早期的神经元中调控模块的差异可及性。引人注目的是,晚期 AD 大脑表现出全基因组表观基因组失调,表明表观基因组侵蚀和细胞身份丧失。

相似文献

1
Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion.
Cell. 2023 Sep 28;186(20):4422-4437.e21. doi: 10.1016/j.cell.2023.08.040.
4
Human microglial state dynamics in Alzheimer's disease progression.
Cell. 2023 Sep 28;186(20):4386-4403.e29. doi: 10.1016/j.cell.2023.08.037.
5
Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer's Disease Genetics.
Trends Neurosci. 2020 Dec;43(12):965-979. doi: 10.1016/j.tins.2020.10.002. Epub 2020 Oct 27.
6
The epigenome in Alzheimer's disease: current state and approaches for a new path to gene discovery and understanding disease mechanism.
Acta Neuropathol. 2016 Oct;132(4):503-14. doi: 10.1007/s00401-016-1612-7. Epub 2016 Aug 29.
7
Genome-wide methylomic regulation of multiscale gene networks in Alzheimer's disease.
Alzheimers Dement. 2023 Aug;19(8):3472-3495. doi: 10.1002/alz.12969. Epub 2023 Feb 22.
9
Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.
Nature. 2015 Feb 19;518(7539):365-9. doi: 10.1038/nature14252.
10
Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer's and Parkinson's diseases.
Nat Genet. 2020 Nov;52(11):1158-1168. doi: 10.1038/s41588-020-00721-x. Epub 2020 Oct 26.

引用本文的文献

1
PICALM Alzheimer's risk allele causes aberrant lipid droplets in microglia.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09486-x.
2
fSuSiE enables fine-mapping of QTLs from genome-scale molecular profiles.
bioRxiv. 2025 Aug 17:2025.08.17.670732. doi: 10.1101/2025.08.17.670732.
3
Single-cell sequencing: accurate disease detection.
Clin Transl Oncol. 2025 Aug 16. doi: 10.1007/s12094-025-04007-8.
4
Aere perennius: how chromatin fidelity is maintained and lost in disease.
NAR Mol Med. 2025 Jul 22;2(3):ugaf026. doi: 10.1093/narmme/ugaf026. eCollection 2025 Jul.
6
Insights into targeted ferroptosis in mechanisms, biology, and role of Alzheimer's disease: an update.
Front Aging Neurosci. 2025 Jul 21;17:1587986. doi: 10.3389/fnagi.2025.1587986. eCollection 2025.
8
Human brain vascular multi-omics elucidates disease-risk associations.
Neuron. 2025 Jul 23. doi: 10.1016/j.neuron.2025.07.001.

本文引用的文献

2
The missing link between genetic association and regulatory function.
Elife. 2022 Dec 14;11:e74970. doi: 10.7554/eLife.74970.
3
Single-cell epigenome analysis reveals age-associated decay of heterochromatin domains in excitatory neurons in the mouse brain.
Cell Res. 2022 Nov;32(11):1008-1021. doi: 10.1038/s41422-022-00719-6. Epub 2022 Oct 7.
4
The three-dimensional landscape of cortical chromatin accessibility in Alzheimer's disease.
Nat Neurosci. 2022 Oct;25(10):1366-1378. doi: 10.1038/s41593-022-01166-7. Epub 2022 Sep 28.
5
propeller: testing for differences in cell type proportions in single cell data.
Bioinformatics. 2022 Oct 14;38(20):4720-4726. doi: 10.1093/bioinformatics/btac582.
6
Genetics of the human microglia regulome refines Alzheimer's disease risk loci.
Nat Genet. 2022 Aug;54(8):1145-1154. doi: 10.1038/s41588-022-01149-1. Epub 2022 Aug 5.
7
Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging.
Dev Cell. 2022 Jun 6;57(11):1347-1368.e12. doi: 10.1016/j.devcel.2022.05.004. Epub 2022 May 24.
8
BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia.
Mol Neurodegener. 2022 May 7;17(1):33. doi: 10.1186/s13024-022-00535-x.
9
Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.
Nat Biotechnol. 2022 Oct;40(10):1458-1466. doi: 10.1038/s41587-022-01284-4. Epub 2022 May 2.
10
Somatic genomic changes in single Alzheimer's disease neurons.
Nature. 2022 Apr;604(7907):714-722. doi: 10.1038/s41586-022-04640-1. Epub 2022 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验