School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
BMC Med. 2023 Sep 29;21(1):374. doi: 10.1186/s12916-023-03070-8.
After the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern.
We conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2.
Our study included 280 records obtained from 147 household studies, contact tracing studies, or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods, although we did not find statistically significant differences between the Omicron subvariants. We found that Omicron BA.1 had the shortest pooled estimates for the incubation period (3.49 days, 95% CI: 3.13-4.86 days), Omicron BA.5 for the serial interval (2.37 days, 95% CI: 1.71-3.04 days), and Omicron BA.1 for the realized generation time (2.99 days, 95% CI: 2.48-3.49 days). Only one estimate for the intrinsic generation time was available for Omicron subvariants: 6.84 days (95% CrI: 5.72-8.60 days) for Omicron BA.1. The ancestral lineage had the highest pooled estimates for each investigated key time-to-event period. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. When pooling the estimates across different virus lineages, we found considerable heterogeneities (I > 80%; I refers to the percentage of total variation across studies that is due to heterogeneity rather than chance), possibly resulting from heterogeneities between the different study populations (e.g., deployed interventions, social behavior, demographic characteristics).
Our study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.
在第一代 COVID-19 疫情之后,大流行因新出现的 SARS-CoV-2 变体而持续加剧。了解每个新出现的关注变体的关键时间事件期至关重要,因为这可以提供有关病毒未来轨迹的信息,并有助于制定疫情爆发的准备和应对计划。在这里,我们旨在研究从原始 SARS-CoV-2 谱系到不同关注变体的潜伏期、序列间隔和生成时间是如何变化的。
我们进行了一项系统评价和荟萃分析,综合了原始谱系、Alpha、Beta 和 Omicron 变体的潜伏期、序列间隔和生成时间(已实现和固有)的估计值。
我们的研究包括从 147 项家庭研究、接触者追踪研究或已知流行病学联系的研究中获得的 280 份记录。随着每个新出现的变体,我们发现分析的关键时间事件期都在逐渐缩短,尽管我们没有发现 Omicron 亚变体之间存在统计学上的显著差异。我们发现,Omicron BA.1 的潜伏期估计值最短(3.49 天,95%CI:3.13-4.86 天),Omicron BA.5 的序列间隔最短(2.37 天,95%CI:1.71-3.04 天),而 Omicron BA.1 的已实现生成时间最短(2.99 天,95%CI:2.48-3.49 天)。对于 Omicron 亚变体,只有一个固有生成时间的估计值可用:Omicron BA.1 为 6.84 天(95%CrI:5.72-8.60 天)。原始谱系的每个调查关键时间事件期的估计值最高。我们还观察到,与病毒谱系相比,序列间隔的估计值较短。当将估计值汇总到不同的病毒谱系时,我们发现存在相当大的异质性(I>80%;I 是指研究之间由于异质性而不是偶然导致的总变异的百分比),这可能是由于不同研究人群之间的异质性造成的(例如,部署的干预措施、社会行为、人口统计学特征)。
我们的研究支持进行接触者追踪和流行病学调查以监测 SARS-CoV-2 传播模式变化的重要性。我们的发现强调了潜伏期、序列间隔和生成时间的逐渐缩短,这可能导致传播速度更快、峰值发病率更高且更难控制的疫情。我们还一致发现序列间隔比潜伏期短,这表明 SARS-CoV-2 的一个关键特征是可能存在无症状传播。这些观察结果对于计划未来的 COVID-19 浪潮至关重要。