Suppr超能文献

铜死亡相关基因的综合分析,用于预测单细胞和多队列研究中的免疫治疗反应。

Integrative analysis of cuproptosis-associated genes for predicting immunotherapy response in single-cell and multi-cohort studies.

机构信息

Department of Nursing, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.

Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

出版信息

J Gene Med. 2024 Jan;26(1):e3600. doi: 10.1002/jgm.3600. Epub 2023 Sep 30.

Abstract

BACKGROUND

The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques.

METHODS

We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)-Cox algorithm to develop cuproptosis cell signaling pathword-related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune-related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines.

RESULTS

Based on single-cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis-related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high- and low-risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high-score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy.

CONCLUSIONS

Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.

摘要

背景

与铜死亡细胞信号通路相关的基因在卵巢癌(OC)的预后和免疫治疗中的作用已被广泛研究。本研究旨在利用生物信息学技术探索这些机制,并为 OC 患者建立预后模型。

方法

我们从基因表达综合数据库(GEO)中获取卵巢癌的单细胞测序数据,并对数据进行预处理。我们分析了多种因素,包括铜死亡细胞信号评分、转录因子、肿瘤发生和进展信号、基因集变异分析(GSVA)和细胞间通讯。对铜死亡细胞信号评分高和低的两组进行差异基因分析,并进行基因本体论和京都基因与基因组百科全书分析。使用癌症基因组图谱的批量 RNA 测序数据,我们使用最小绝对收缩和选择算子(LASSO)-Cox 算法开发铜死亡细胞信号通路相关基因特征,并使用 GEO 卵巢癌数据集进行验证。此外,我们使用多种生物信息学方法分析构建模型中涉及的基因的内在规律,包括免疫相关分析和单核苷酸多态性。分子对接用于筛选潜在的治疗药物。为了确认分析结果,我们进行了各种湿实验,如 Western blot、细胞计数试剂盒 8(CCK8)和克隆形成试验,以验证 Von Willebrand 因子(VWF)基因在两种卵巢癌细胞系中的作用。

结果

基于单细胞数据分析,我们发现内皮细胞和成纤维细胞在 OC 中表现出活性物质合成和信号通路激活,这进一步促进了免疫细胞抑制、癌细胞增殖和转移。卵巢癌有很高的转移倾向,癌细胞与其他细胞合作促进疾病进展。我们开发了一个由 8 个铜死亡相关基因(CRG)组成的特征(MAGEF1、DNPH1、RARRES1、NBL1、IFI27、VWF、OLFML3 和 IGFBP4),可预测卵巢癌患者的总生存期。该模型在外部 GEO 验证集中得到验证。我们观察到在高风险和低风险组中都有免疫细胞的活跃浸润状态,尽管激活的特定细胞、基因和途径不同。基因突变分析表明,TP53 是卵巢癌中最常突变的基因。我们还预测了与 CRG 相关的小分子药物,并确定了几个潜在的候选药物。VWF 被确定为卵巢癌的致癌基因,肿瘤样本中的蛋白表达水平明显高于正常样本。铜死亡细胞信号通路的高分模型与 OC 患者对免疫治疗的敏感性相关。

结论

我们的研究提供了对与铜死亡细胞信号通路相关的基因在卵巢癌中的作用机制的更深入了解,突出了未来治疗干预的潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验