Suppr超能文献

多模型序列分析 MRI 数据以预测异质组织中的微观结构。

Multi-model sequential analysis of MRI data for microstructure prediction in heterogeneous tissue.

机构信息

School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, 2008, Australia.

The Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia.

出版信息

Sci Rep. 2023 Oct 1;13(1):16486. doi: 10.1038/s41598-023-43329-x.

Abstract

We propose a general method for combining multiple models to predict tissue microstructure, with an exemplar using in vivo diffusion-relaxation MRI data. The proposed method obviates the need to select a single 'optimum' structure model for data analysis in heterogeneous tissues where the best model varies according to local environment. We break signal interpretation into a three-stage sequence: (1) application of multiple semi-phenomenological models to predict the physical properties of tissue water pools contributing to the observed signal; (2) from each Stage-1 semi-phenomenological model, application of a tissue microstructure model to predict the relative volumes of tissue structure components that make up each water pool; and (3) aggregation of the predictions of tissue structure, with weightings based on model likelihood and fractional volumes of the water pools from Stage-1. The multiple model approach is expected to reduce prediction variance in tissue regions where a complex model is overparameterised, and bias where a model is underparameterised. The separation of signal characterisation (Stage-1) from biological assignment (Stage-2) enables alternative biological interpretations of the observed physical properties of the system, by application of different tissue structure models. The proposed method is exemplified with human prostate diffusion-relaxation MRI data, but has potential application to a wide range of analyses where a single model may not be optimal throughout the sampled domain.

摘要

我们提出了一种组合多个模型来预测组织微观结构的通用方法,并用体内扩散-弛豫 MRI 数据的示例来说明。所提出的方法避免了在异质组织中选择单个“最佳”结构模型进行数据分析的需要,因为在局部环境下最佳模型是变化的。我们将信号解释分为三个阶段序列:(1)应用多个半唯象模型来预测对观察信号有贡献的组织水池的物理特性;(2)从每个第一阶段半唯象模型中,应用组织微观结构模型来预测构成每个水池的组织结构成分的相对体积;(3)根据模型似然和第一阶段水池的分数体积对组织结构的预测进行聚合。多模型方法有望减少在复杂模型参数过多的组织区域的预测方差,以及在模型参数不足的组织区域的偏差。通过应用不同的组织结构模型,将信号特征描述(第一阶段)与生物分配(第二阶段)分开,可以对系统观察到的物理特性进行替代的生物学解释。该方法用人类前列腺扩散-弛豫 MRI 数据进行了示例,但具有广泛的应用潜力,因为在整个采样区域内,单一模型可能不是最佳的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f28c/10543593/bc7290b18c29/41598_2023_43329_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验