Suppr超能文献

基于扩散 MRI 的深度学习作为活体显微镜揭示了人类白质微观结构中的性别差异。

Deep learning with diffusion MRI as in vivo microscope reveals sex-related differences in human white matter microstructure.

机构信息

Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, 370 Jay Street, 9th Floor, Brooklyn, NY, 11201, USA.

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.

出版信息

Sci Rep. 2024 May 14;14(1):9835. doi: 10.1038/s41598-024-60340-y.

Abstract

Biological sex is a crucial variable in neuroscience studies where sex differences have been documented across cognitive functions and neuropsychiatric disorders. While gross statistical differences have been previously documented in macroscopic brain structure such as cortical thickness or region size, less is understood about sex-related cellular-level microstructural differences which could provide insight into brain health and disease. Studying these microstructural differences between men and women paves the way for understanding brain disorders and diseases that manifest differently in different sexes. Diffusion MRI is an important in vivo, non-invasive methodology that provides a window into brain tissue microstructure. Our study develops multiple end-to-end classification models that accurately estimates the sex of a subject using volumetric diffusion MRI data and uses these models to identify white matter regions that differ the most between men and women. 471 male and 560 female healthy subjects (age range, 22-37 years) from the Human Connectome Project are included. Fractional anisotropy, mean diffusivity and mean kurtosis are used to capture brain tissue microstructure characteristics. Diffusion parametric maps are registered to a standard template to reduce bias that can arise from macroscopic anatomical differences like brain size and contour. This study employ three major model architectures: 2D convolutional neural networks, 3D convolutional neural networks and Vision Transformer (with self-supervised pretraining). Our results show that all 3 models achieve high sex classification performance (test AUC 0.92-0.98) across all diffusion metrics indicating definitive differences in white matter tissue microstructure between males and females. We further use complementary model architectures to inform about the pattern of detected microstructural differences and the influence of short-range versus long-range interactions. Occlusion analysis together with Wilcoxon signed-rank test is used to determine which white matter regions contribute most to sex classification. The results indicate that sex-related differences manifest in both local features as well as global features / longer-distance interactions of tissue microstructure. Our highly consistent findings across models provides new insight supporting differences between male and female brain cellular-level tissue organization particularly in the central white matter.

摘要

生物学性别是神经科学研究中的一个关键变量,其中已经记录了认知功能和神经精神障碍方面的性别差异。虽然以前已经记录了宏观大脑结构(如皮质厚度或区域大小)方面的总体统计差异,但对于与性别相关的细胞水平微观结构差异知之甚少,这些差异可能提供对大脑健康和疾病的深入了解。研究男性和女性之间的这些微观结构差异为理解在不同性别中表现不同的大脑障碍和疾病铺平了道路。扩散 MRI 是一种重要的体内非侵入性方法,可提供大脑组织微观结构的窗口。我们的研究开发了多个端到端分类模型,这些模型可以使用容积扩散 MRI 数据准确估计受试者的性别,并使用这些模型来识别男性和女性之间差异最大的白质区域。该研究纳入了来自人类连接组计划的 471 名男性和 560 名女性健康受试者(年龄范围为 22-37 岁)。分数各向异性、平均扩散率和平均峰度用于捕获脑组织微观结构特征。扩散参数图被注册到标准模板以减少可能由大脑大小和轮廓等宏观解剖差异引起的偏差。该研究采用了三种主要的模型架构:2D 卷积神经网络、3D 卷积神经网络和 Vision Transformer(具有自监督预训练)。我们的结果表明,所有 3 种模型在所有扩散指标上都实现了高性别分类性能(测试 AUC 0.92-0.98),这表明男性和女性之间的白质组织微观结构存在明显差异。我们进一步使用补充模型架构来了解检测到的微观结构差异模式以及短程与长程相互作用的影响。遮挡分析结合 Wilcoxon 符号秩检验用于确定对性别分类贡献最大的白质区域。结果表明,性别相关的差异表现在组织微观结构的局部特征以及全局特征/更长距离相互作用中。我们在模型之间的高度一致的发现提供了新的见解,支持男性和女性大脑细胞水平组织之间的差异,特别是在中央白质中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2782/11094063/267cb27d7f79/41598_2024_60340_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验