Suppr超能文献

通过心电图和多光谱光电容积脉搏波描记法检测血流动力学状态的同步可穿戴设备。

Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography.

机构信息

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Onatrio, Canada.

出版信息

Nat Biomed Eng. 2023 Oct;7(10):1229-1241. doi: 10.1038/s41551-023-01098-y. Epub 2023 Oct 2.

Abstract

Cardiovascular health is typically monitored by measuring blood pressure. Here we describe a wireless on-skin system consisting of synchronized sensors for chest electrocardiography and peripheral multispectral photoplethysmography for the continuous monitoring of metrics related to vascular resistance, cardiac output and blood-pressure regulation. We used data from the sensors to train a support-vector-machine model for the classification of haemodynamic states (resulting from exposure to heat or cold, physical exercise, breath holding, performing the Valsalva manoeuvre or from vasopressor administration during post-operative hypotension) that independently affect blood pressure, cardiac output and vascular resistance. The model classified the haemodynamic states on the basis of an unseen subset of sensor data for 10 healthy individuals, 20 patients with hypertension undergoing haemodynamic stimuli and 15 patients recovering from cardiac surgery, with an average precision of 0.878 and an overall area under the receiver operating characteristic curve of 0.958. The multinodal sensor system may provide clinically actionable insights into haemodynamic states for use in the management of cardiovascular disease.

摘要

心血管健康通常通过测量血压来监测。在这里,我们描述了一种无线皮肤系统,它由胸部心电图同步传感器和外周多光谱光体积描记法传感器组成,用于连续监测与血管阻力、心输出量和血压调节相关的指标。我们使用传感器数据来训练支持向量机模型,以对血流动力学状态(由于暴露于热或冷、体育锻炼、屏气、施行瓦尔萨尔瓦动作或术后低血压时使用血管加压药)进行分类,这些状态独立影响血压、心输出量和血管阻力。该模型基于 10 名健康个体、20 名高血压患者进行血流动力学刺激和 15 名心脏手术后恢复患者的传感器数据未见子集,对血流动力学状态进行分类,平均精度为 0.878,整体接收器操作特征曲线下面积为 0.958。多节点传感器系统可为心血管疾病管理中血流动力学状态提供临床可操作的见解。

相似文献

1
Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography.
Nat Biomed Eng. 2023 Oct;7(10):1229-1241. doi: 10.1038/s41551-023-01098-y. Epub 2023 Oct 2.
3
Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
Biomed Phys Eng Express. 2020 Mar 13;6(3):035006. doi: 10.1088/2057-1976/ab7a55.
4
Waveform Morphology Comparison in Wearable Blood Pressure Sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2902-2905. doi: 10.1109/EMBC48229.2022.9870890.
6
Minimally invasive monitoring.
Crit Care Clin. 2015 Jan;31(1):25-42. doi: 10.1016/j.ccc.2014.08.002.
7
Wearable System Integrating Dual Piezoresistive and Photoplethysmography Sensors for Simultaneous Pulse Wave Monitoring.
ACS Appl Mater Interfaces. 2024 Nov 27;16(47):65402-65413. doi: 10.1021/acsami.4c17710. Epub 2024 Nov 12.
9
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment.
Sensors (Basel). 2017 Oct 13;17(10):2338. doi: 10.3390/s17102338.
10
Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification.
Biosensors (Basel). 2018 Oct 26;8(4):101. doi: 10.3390/bios8040101.

引用本文的文献

1
Application-Specific Optimization of Integrated Spectral Sensors.
ACS Photonics. 2025 Jul 23;12(8):4723-4730. doi: 10.1021/acsphotonics.5c01213. eCollection 2025 Aug 20.
2
Intelligent sensing devices and systems for personalized mental health.
Med X. 2025 Dec;3(1). doi: 10.1007/s44258-025-00057-3. Epub 2025 Apr 2.
3
Flexible Smart Insole and Plantar Pressure Monitoring Using Screen-Printed Nanomaterials and Piezoresistive Sensors.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):47153-47161. doi: 10.1021/acsami.5c08296. Epub 2025 Jul 29.
4
Continuous biosignal acquisition beyond the limit of epidermal turnover.
Mater Horiz. 2025 Jul 21. doi: 10.1039/d5mh00758e.
6
Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring.
Sensors (Basel). 2025 Jul 6;25(13):4213. doi: 10.3390/s25134213.
8
All-printed chip-less wearable neuromorphic system for multimodal physicochemical health monitoring.
Nat Commun. 2025 Jul 1;16(1):5689. doi: 10.1038/s41467-025-60854-7.
9
A Generative AI-Assisted Piezo-MEMS Ultrasound Device for Plant Dehydration Monitoring.
Adv Sci (Weinh). 2025 Aug;12(32):e04954. doi: 10.1002/advs.202504954. Epub 2025 Jun 19.
10
Wearable Hyperspectral Photoplethysmography Allows Continuous Monitoring of Exercise-Induced Hypertension.
Adv Sci (Weinh). 2025 Jun;12(22):e2417625. doi: 10.1002/advs.202417625. Epub 2025 Apr 25.

本文引用的文献

3
Wearable Devices for Physical Monitoring of Heart: A Review.
Biosensors (Basel). 2022 May 2;12(5):292. doi: 10.3390/bios12050292.
4
Blood pressure and its variability: classic and novel measurement techniques.
Nat Rev Cardiol. 2022 Oct;19(10):643-654. doi: 10.1038/s41569-022-00690-0. Epub 2022 Apr 19.
6
Explainability and artificial intelligence in medicine.
Lancet Digit Health. 2022 Apr;4(4):e214-e215. doi: 10.1016/S2589-7500(22)00029-2.
7
Remote Healthcare for Elderly People Using Wearables: A Review.
Biosensors (Basel). 2022 Jan 27;12(2):73. doi: 10.3390/bios12020073.
8
Can Post-Exercise Hemodynamic Response Be Influenced by Different Recovery Methods in Paraplegic Sportsmen?
Int J Environ Res Public Health. 2022 Feb 4;19(3):1772. doi: 10.3390/ijerph19031772.
9
The Impact of Wearable Technologies in Health Research: Scoping Review.
JMIR Mhealth Uhealth. 2022 Jan 25;10(1):e34384. doi: 10.2196/34384.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验