文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺失数据对智能手表测量的心率变异性的影响:探索性观察研究。

Effects of Missing Data on Heart Rate Variability Measured From A Smartwatch: Exploratory Observational Study.

作者信息

Davis-Wilson Hope, Hegarty-Craver Meghan, Gaur Pooja, Boyce Matthew, Holt Jonathan R, Preble Edward, Eckhoff Randall, Li Lei, Walls Howard, Dausch David, Temple Dorota

机构信息

RTI International, Morrisville, NC, United States.

出版信息

JMIR Form Res. 2025 Feb 24;9:e53645. doi: 10.2196/53645.


DOI:10.2196/53645
PMID:39993288
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11894354/
Abstract

BACKGROUND: Measuring heart rate variability (HRV) through wearable photoplethysmography sensors from smartwatches is gaining popularity for monitoring many health conditions. However, missing data caused by insufficient wear compliance or signal quality can degrade the performance of health metrics or algorithm calculations. Research is needed on how to best account for missing data and to assess the accuracy of metrics derived from photoplethysmography sensors. OBJECTIVE: This study aimed to evaluate the influence of missing data on HRV metrics collected from smartwatches both at rest and during activity in real-world settings and to evaluate HRV agreement and consistency between wearable photoplethysmography and gold-standard wearable electrocardiogram (ECG) sensors in real-world settings. METHODS: Healthy participants were outfitted with a smartwatch with a photoplethysmography sensor that collected high-resolution interbeat interval (IBI) data to wear continuously (day and night) for up to 6 months. New datasets were created with various amounts of missing data and then compared with the original (reference) datasets. 5-minute windows of each HRV metric (median IBI, SD of IBI values [STDRR], root-mean-square of the difference in successive IBI values [RMSDRR], low-frequency [LF] power, high-frequency [HF] power, and the ratio of LF to HF power [LF/HF]) were compared between the reference and the missing datasets (10%, 20%, 35%, and 60% missing data). HRV metrics calculated from the photoplethysmography sensor were compared with HRV metrics calculated from a chest-worn ECG sensor. RESULTS: At rest, median IBI remained stable until at least 60% of data degradation (P=.24), STDRR remained stable until at least 35% of data degradation (P=.02), and RMSDRR remained stable until at least 35% data degradation (P=.001). During the activity, STDRR remained stable until 20% data degradation (P=.02) while median IBI (P=.01) and RMSDRR P<.001) were unstable at 10% data degradation. LF (rest: P<.001; activity: P<.001), HF (rest: P<.001, activity: P<.001), and LF/HF (rest: P<.001, activity: P<.001) were unstable at 10% data degradation during rest and activity. Median IBI values calculated from photoplethysmography sensors had a moderate agreement (intraclass correlation coefficient [ICC]=0.585) and consistency (ICC=0.589) and LF had moderate consistency (ICC=0.545) with ECG sensors. Other HRV metrics demonstrated poor agreement (ICC=0.071-0.472). CONCLUSIONS: This study describes a methodology for the extraction of HRV metrics from photoplethysmography sensor data that resulted in stable and valid metrics while using the least amount of available data. While smartwatches containing photoplethysmography sensors are valuable for remote monitoring of patients, future work is needed to identify best practices for using these sensors to evaluate HRV in medical settings.

摘要

背景:通过智能手表上的可穿戴光电容积脉搏波描记术(PPG)传感器测量心率变异性(HRV),在监测多种健康状况方面越来越受欢迎。然而,由于佩戴依从性不足或信号质量导致的数据缺失,可能会降低健康指标或算法计算的性能。需要研究如何最好地处理缺失数据,并评估从光电容积脉搏波描记术传感器得出的指标的准确性。 目的:本研究旨在评估在现实环境中,缺失数据对从智能手表收集的静息和活动状态下HRV指标的影响,并评估可穿戴光电容积脉搏波描记术与金标准可穿戴心电图(ECG)传感器在现实环境中的HRV一致性。 方法:健康参与者佩戴一款带有光电容积脉搏波描记术传感器的智能手表,该传感器收集高分辨率的心跳间期(IBI)数据,要求参与者连续(白天和黑夜)佩戴长达6个月。创建了包含不同数量缺失数据的新数据集,然后与原始(参考)数据集进行比较。比较参考数据集和缺失数据集(缺失数据分别为10%、20%、35%和60%)之间每个HRV指标(IBI中位数、IBI值的标准差[STDRR]、连续IBI值差异的均方根[RMSDRR]、低频[LF]功率、高频[HF]功率以及LF与HF功率之比[LF/HF])的5分钟窗口数据。将从光电容积脉搏波描记术传感器计算得出的HRV指标与从胸部佩戴的ECG传感器计算得出的HRV指标进行比较。 结果:在静息状态下,IBI中位数至少在数据缺失60%之前保持稳定(P = 0.24),STDRR至少在数据缺失35%之前保持稳定(P = 0.02),RMSDRR至少在数据缺失35%之前保持稳定(P = 0.001)。在活动状态下,STDRR至少在数据缺失20%之前保持稳定(P = 0.02),而IBI中位数(P = 0.01)和RMSDRR(P < 0.001)在数据缺失10%时就不稳定了。在静息和活动状态下,LF(静息:P < 0.001;活动:P < 0.001)、HF(静息:P < 0.001,活动:P < 0.001)和LF/HF(静息:P < 0.001,活动:P < 0.001)在数据缺失10%时就不稳定了。从光电容积脉搏波描记术传感器计算得出的IBI中位数与ECG传感器具有中等一致性(组内相关系数[ICC] = 0.585)和稳定性(ICC = 0.589),LF与ECG传感器具有中等稳定性(ICC = 0.545)。其他HRV指标显示出较差的一致性(ICC = 0.071 - 0.472)。 结论:本研究描述了一种从光电容积脉搏波描记术传感器数据中提取HRV指标的方法,该方法在使用最少可用数据的情况下,能得出稳定且有效的指标。虽然包含光电容积脉搏波描记术传感器的智能手表对于远程监测患者很有价值,但未来仍需要开展工作,以确定在医疗环境中使用这些传感器评估HRV的最佳实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/b12caf1ad8e2/formative_v9i1e53645_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/56ede4560dd3/formative_v9i1e53645_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/d02a342e70a8/formative_v9i1e53645_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/c9ea532d92dd/formative_v9i1e53645_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/10eb4fdc1235/formative_v9i1e53645_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/b12caf1ad8e2/formative_v9i1e53645_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/56ede4560dd3/formative_v9i1e53645_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/d02a342e70a8/formative_v9i1e53645_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/c9ea532d92dd/formative_v9i1e53645_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/10eb4fdc1235/formative_v9i1e53645_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d11/11894354/b12caf1ad8e2/formative_v9i1e53645_fig5.jpg

相似文献

[1]
Effects of Missing Data on Heart Rate Variability Measured From A Smartwatch: Exploratory Observational Study.

JMIR Form Res. 2025-2-24

[2]
Accuracy Assessment of Oura Ring Nocturnal Heart Rate and Heart Rate Variability in Comparison With Electrocardiography in Time and Frequency Domains: Comprehensive Analysis.

J Med Internet Res. 2022-1-18

[3]
Evaluation of In-Ear and Fingertip-Based Photoplethysmography Sensors for Measuring Cardiac Vagal Tone Relevant Heart Rate Variability Parameters.

Sensors (Basel). 2025-2-28

[4]
Continuous Monitoring of Heart Rate Variability in Free-Living Conditions Using Wearable Sensors: Exploratory Observational Study.

JMIR Form Res. 2024-8-7

[5]
A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability.

PLoS One. 2022

[6]
Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.

Eur J Appl Physiol. 2016-8

[7]
Assessment of Physiological Signals from Photoplethysmography Sensors Compared to an Electrocardiogram Sensor: A Validation Study in Daily Life.

Sensors (Basel). 2024-10-24

[8]
Validation of a Wireless Bluetooth Photoplethysmography Sensor Used on the Earlobe for Monitoring Heart Rate Variability Features during a Stress-Inducing Mental Task in Healthy Individuals.

Sensors (Basel). 2020-7-13

[9]
Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study.

Lancet Digit Health. 2020-12

[10]
Heart Rate Variability from Wearables: A Comparative Analysis Among Standard ECG, a Smart Shirt and a Wristband.

Stud Health Technol Inform. 2019

本文引用的文献

[1]
A systematic review and meta-analysis of heart rate variability in COPD.

Front Cardiovasc Med. 2023-2-17

[2]
Commercial Smart Watches and Heart Rate Monitors: A Concurrent Validity Analysis.

J Strength Cond Res. 2023-9-1

[3]
Accuracy and Systematic Biases of Heart Rate Measurements by Consumer-Grade Fitness Trackers in Postoperative Patients: Prospective Clinical Trial.

J Med Internet Res. 2022-12-30

[4]
Applications of Remote Patient Monitoring.

Prim Care. 2022-12

[5]
Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study.

Circulation. 2022-11-8

[6]
Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women.

Sensors (Basel). 2022-8-30

[7]
Effects of Missing Data on Heart Rate Variability Metrics.

Sensors (Basel). 2022-8-2

[8]
Wearable Sensor-Based Detection of Influenza in Presymptomatic and Asymptomatic Individuals.

J Infect Dis. 2023-4-12

[9]
Considerations to address missing data when deriving clinical trial endpoints from digital health technologies.

Contemp Clin Trials. 2022-2

[10]
A Review of Wearable Multi-Wavelength Photoplethysmography.

IEEE Rev Biomed Eng. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索