Suppr超能文献

原发性胆汁性胆管炎风险分层关键生物标志物的综合生物信息学分析和实验验证。

Integrative bioinformatics analysis and experimental validation of key biomarkers for risk stratification in primary biliary cholangitis.

机构信息

State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

出版信息

Arthritis Res Ther. 2023 Oct 2;25(1):186. doi: 10.1186/s13075-023-03163-y.

Abstract

BACKGROUND

Primary biliary cholangitis (PBC) is an autoimmune liver disease, whose etiology is yet to be fully elucidated. Currently, ursodeoxycholic acid (UDCA) is the only first-line drug. However, 40% of PBC patients respond poorly to it and carry a potential risk of disease progression. So, in this study, we aimed to explore new biomarkers for risk stratification in PBC patients to enhance treatment.

METHODS

We first downloaded the clinical characteristics and microarray datasets of PBC patients from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Hub genes were further validated in multiple public datasets and PBC mouse model. Furthermore, we also verified the expression of the hub genes and developed a predictive model in our clinical specimens.

RESULTS

A total of 166 DEGs were identified in the GSE79850 dataset, including 95 upregulated and 71 downregulated genes. Enrichment analysis indicated that DEGs were significantly enriched in inflammatory or immune-related process. Among these DEGs, 15 risk-related genes were recognized and further validated in the GSE119600 cohort. Then, TXNIP, CD44, ENTPD1, and PDGFRB were identified as candidate hub genes. Finally, we proceeded to the next screening with these four genes in our serum samples and developed a three-gene panel. The gene panel could effectively identify those patients at risk of disease progression, yielding an AUC of 0.777 (95% CI, 0.657-0.870).

CONCLUSIONS

In summary, combining bioinformatics analysis and experiment validation, we identified TXNIP, CD44, and ENTPD1 as promising biomarkers for risk stratification in PBC patients.

摘要

背景

原发性胆汁性胆管炎(PBC)是一种自身免疫性肝病,其病因尚未完全阐明。目前,熊去氧胆酸(UDCA)是唯一的一线药物。然而,40%的 PBC 患者对此反应不佳,且存在疾病进展的潜在风险。因此,在这项研究中,我们旨在探索 PBC 患者风险分层的新生物标志物,以增强治疗效果。

方法

我们首先从基因表达综合数据库(GEO)下载 PBC 患者的临床特征和微阵列数据集。鉴定差异表达基因(DEGs)并进行富集分析。进一步在多个公共数据集和 PBC 小鼠模型中验证关键基因。此外,我们还验证了关键基因的表达,并在我们的临床标本中建立了一个预测模型。

结果

在 GSE79850 数据集中共鉴定出 166 个 DEGs,包括 95 个上调基因和 71 个下调基因。富集分析表明,DEGs 显著富集于炎症或免疫相关过程中。在这些 DEGs 中,我们在 GSE119600 队列中进一步验证了 15 个与风险相关的基因。然后,鉴定出 TXNIP、CD44、ENTPD1 和 PDGFRB 为候选关键基因。最后,我们用这四个基因在我们的血清样本中进行了下一步筛选,并开发了一个三基因panel。该基因panel 可有效识别那些疾病进展风险较高的患者,AUC 为 0.777(95%CI,0.657-0.870)。

结论

总之,通过生物信息学分析和实验验证,我们确定 TXNIP、CD44 和 ENTPD1 是 PBC 患者风险分层的有前途的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a8e/10544390/acf027332c70/13075_2023_3163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验