Tward Daniel
Brain Mapping Center, University of California Los Angeles, Departments of Computational Medicine and Neurology, Los Angeles, CA, USA.
Front Appl Math Stat. 2021;7. doi: 10.3389/fams.2021.718607. Epub 2021 Aug 24.
Accurate spatial alignment is essential for any population neuroimaging study, and affine (12 parameter linear/translation) or rigid (6 parameter rotation/translation) alignments play a major role. Here we consider intensity based alignment of neuroimages using gradient based optimization, which is a problem that continues to be important in many other areas of medical imaging and computer vision in general. A key challenge is robustness. Optimization often fails when transformations have components with different characteristic scales, such as linear versus translation parameters. Hand tuning or other scaling approaches have been used, but efficient automatic methods are essential for generalizing to new imaging modalities, to specimens of different sizes, and to big datasets where manual approaches are not feasible. To address this we develop a left invariant metric on these two matrix groups, based on the norm squared of optical flow induced on a template image. This metric is used in a natural gradient descent algorithm, where gradients (covectors) are converted to perturbations (vectors) by applying the inverse of the metric to define a search direction in which to update parameters. Using a publicly available magnetic resonance neuroimage database, we show that this approach outperforms several other gradient descent optimization strategies. Due to left invariance, our metric needs to only be computed once during optimization, and can therefore be implemented with negligible computation time.
准确的空间对齐对于任何群体神经成像研究都至关重要,仿射(12参数线性/平移)或刚体(6参数旋转/平移)对齐起着主要作用。在这里,我们考虑使用基于梯度的优化对神经图像进行基于强度的对齐,这是一个在医学成像和计算机视觉的许多其他领域仍然很重要的问题。一个关键挑战是鲁棒性。当变换具有不同特征尺度的分量时,例如线性参数与平移参数,优化通常会失败。已经使用了手动调整或其他缩放方法,但有效的自动方法对于推广到新的成像模态、不同大小的标本以及手动方法不可行的大数据集至关重要。为了解决这个问题,我们基于模板图像上诱导的光流的范数平方,在这两个矩阵组上开发了一种左不变度量。该度量用于自然梯度下降算法中,其中通过应用度量的逆将梯度(余向量)转换为扰动(向量),以定义更新参数的搜索方向。使用公开可用的磁共振神经图像数据库,我们表明这种方法优于其他几种梯度下降优化策略。由于左不变性,我们的度量在优化过程中只需要计算一次,因此可以以可忽略不计的计算时间实现。