Suppr超能文献

一种用于仿射图像配准中自然梯度下降的基于光流的左不变度量。

An optical flow based left-invariant metric for natural gradient descent in affine image registration.

作者信息

Tward Daniel

机构信息

Brain Mapping Center, University of California Los Angeles, Departments of Computational Medicine and Neurology, Los Angeles, CA, USA.

出版信息

Front Appl Math Stat. 2021;7. doi: 10.3389/fams.2021.718607. Epub 2021 Aug 24.

Abstract

Accurate spatial alignment is essential for any population neuroimaging study, and affine (12 parameter linear/translation) or rigid (6 parameter rotation/translation) alignments play a major role. Here we consider intensity based alignment of neuroimages using gradient based optimization, which is a problem that continues to be important in many other areas of medical imaging and computer vision in general. A key challenge is robustness. Optimization often fails when transformations have components with different characteristic scales, such as linear versus translation parameters. Hand tuning or other scaling approaches have been used, but efficient automatic methods are essential for generalizing to new imaging modalities, to specimens of different sizes, and to big datasets where manual approaches are not feasible. To address this we develop a left invariant metric on these two matrix groups, based on the norm squared of optical flow induced on a template image. This metric is used in a natural gradient descent algorithm, where gradients (covectors) are converted to perturbations (vectors) by applying the inverse of the metric to define a search direction in which to update parameters. Using a publicly available magnetic resonance neuroimage database, we show that this approach outperforms several other gradient descent optimization strategies. Due to left invariance, our metric needs to only be computed once during optimization, and can therefore be implemented with negligible computation time.

摘要

准确的空间对齐对于任何群体神经成像研究都至关重要,仿射(12参数线性/平移)或刚体(6参数旋转/平移)对齐起着主要作用。在这里,我们考虑使用基于梯度的优化对神经图像进行基于强度的对齐,这是一个在医学成像和计算机视觉的许多其他领域仍然很重要的问题。一个关键挑战是鲁棒性。当变换具有不同特征尺度的分量时,例如线性参数与平移参数,优化通常会失败。已经使用了手动调整或其他缩放方法,但有效的自动方法对于推广到新的成像模态、不同大小的标本以及手动方法不可行的大数据集至关重要。为了解决这个问题,我们基于模板图像上诱导的光流的范数平方,在这两个矩阵组上开发了一种左不变度量。该度量用于自然梯度下降算法中,其中通过应用度量的逆将梯度(余向量)转换为扰动(向量),以定义更新参数的搜索方向。使用公开可用的磁共振神经图像数据库,我们表明这种方法优于其他几种梯度下降优化策略。由于左不变性,我们的度量在优化过程中只需要计算一次,因此可以以可忽略不计的计算时间实现。

相似文献

1
An optical flow based left-invariant metric for natural gradient descent in affine image registration.
Front Appl Math Stat. 2021;7. doi: 10.3389/fams.2021.718607. Epub 2021 Aug 24.
3
A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.
IEEE Trans Cybern. 2017 May;47(5):1299-1312. doi: 10.1109/TCYB.2016.2587825. Epub 2016 Jul 26.
4
Point Set Registration for 3D Range Scans Using Fuzzy Cluster-Based Metric and Efficient Global Optimization.
IEEE Trans Pattern Anal Mach Intell. 2021 Sep;43(9):3229-3246. doi: 10.1109/TPAMI.2020.2978477. Epub 2021 Aug 4.
7
Quadratic penalty method for intensity-based deformable image registration and 4DCT lung motion recovery.
Med Phys. 2019 May;46(5):2194-2203. doi: 10.1002/mp.13457. Epub 2019 Mar 14.
8
RegQCNET: Deep quality control for image-to-template brain MRI affine registration.
Phys Med Biol. 2020 Nov 17;65(22):225022. doi: 10.1088/1361-6560/abb6be.
9
Pulmonary nodule registration: rigid or nonrigid?
Med Phys. 2011 Jul;38(7):4406-14. doi: 10.1118/1.3602457.
10
Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.
J Med Syst. 2017 Nov 3;41(12):197. doi: 10.1007/s10916-017-0846-9.

引用本文的文献

1
Skeletonization of neuronal processes using Discrete Morse techniques from computational topology.
Res Sq. 2025 Jun 20:rs.3.rs-6642891. doi: 10.21203/rs.3.rs-6642891/v1.
2
Scaling laws for Haralick texture features of linear gradients.
PeerJ Comput Sci. 2025 Apr 30;11:e2856. doi: 10.7717/peerj-cs.2856. eCollection 2025.
4
Skeletonization of neuronal processes using Discrete Morse techniques from computational topology.
bioRxiv. 2025 May 15:2025.05.12.653477. doi: 10.1101/2025.05.12.653477.
5
A Review of Medical Image Registration for Different Modalities.
Bioengineering (Basel). 2024 Aug 2;11(8):786. doi: 10.3390/bioengineering11080786.
6
A Majorization-Minimization Algorithm for Neuroimage Registration.
SIAM J Imaging Sci. 2024;17(1):273-300. doi: 10.1137/22m1516907.
7
The molecular cytoarchitecture of the adult mouse brain.
Nature. 2023 Dec;624(7991):333-342. doi: 10.1038/s41586-023-06818-7. Epub 2023 Dec 13.
8
STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
Nat Commun. 2023 Dec 8;14(1):8123. doi: 10.1038/s41467-023-43915-7.
9
Projective Diffeomorphic Mapping of Molecular Digital Pathology with Tissue MRI.
Commun Eng. 2022;1. doi: 10.1038/s44172-022-00044-1. Epub 2022 Dec 13.
10
Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
bioRxiv. 2023 Aug 19:2023.04.11.534630. doi: 10.1101/2023.04.11.534630.

本文引用的文献

1
Metric Learning for Image Registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
2
The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
Cell. 2020 May 14;181(4):936-953.e20. doi: 10.1016/j.cell.2020.04.007. Epub 2020 May 7.
5
An Efficient Preconditioner for Stochastic Gradient Descent Optimization of Image Registration.
IEEE Trans Med Imaging. 2019 Oct;38(10):2314-2325. doi: 10.1109/TMI.2019.2897943. Epub 2019 Feb 11.
6
VoxelMorph: A Learning Framework for Deformable Medical Image Registration.
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
7
SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.
J Digit Imaging. 2018 Jun;31(3):290-303. doi: 10.1007/s10278-017-0037-8.
8
Quicksilver: Fast predictive image registration - A deep learning approach.
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
9
Parametric Surface Diffeomorphometry for Low Dimensional Embeddings of Dense Segmentations and Imagery.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1195-1208. doi: 10.1109/TPAMI.2016.2578317. Epub 2016 Jun 8.
10
Spatially-varying metric learning for diffeomorphic image registration: a variational framework.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):227-34. doi: 10.1007/978-3-319-10404-1_29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验