Suppr超能文献

利用基于深度学习的因果推断来探究万古霉素对血培养阳性重症监护病房患者进行连续性肾脏替代治疗必要性的影响。

Utilizing deep learning-based causal inference to explore vancomycin's impact on continuous kidney replacement therapy necessity in blood culture-positive intensive care unit patients.

作者信息

Kang Min Woo, Kang Yoonjin

机构信息

Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.

Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University, College of Medicine, Seoul, South Korea.

出版信息

Microbiol Spectr. 2025 Jan 7;13(1):e0266224. doi: 10.1128/spectrum.02662-24. Epub 2024 Dec 10.

Abstract

Patients with positive blood cultures in the intensive care unit (ICU) are at high risk for septic acute kidney injury requiring continuous kidney replacement therapy (CKRT), especially when treated with vancomycin. This study developed a machine learning model to predict CKRT and examined vancomycin's impact using deep learning-based causal inference. We analyzed ICU patients with positive blood cultures, utilizing the Medical Information Mart for Intensive Care III data set. The primary outcome was defined as the initiation of CKRT during the ICU stay. The machine learning models were developed to predict the outcome. The deep learning-based causal inference model was utilized to quantitatively demonstrate the impact of vancomycin on the probability of CKRT initiation. Logistic regression was performed to analyze the relationship between the variables and the susceptibility of vancomycin. A total of 1,318 patients were included in the analysis, with 41 requiring CKRT. The Random Forest and Light Gradient Boosting Machine exhibited the best performance, with Area Under Curve of Receiver Operating Characteristic Curve values of 0.905 and 0.886, respectively. The deep learning-based causal inference model demonstrated an average 7.7% increase in the probability of CKRT occurrence when administrating vancomycin in total data set. Additionally, that younger age, lower diastolic blood pressure, higher heart rate, higher baseline creatinine, and lower bicarbonate levels sensitized the probability of CKRT application in response to vancomycin treatment. Deep learning-based causal inference models showed that vancomycin administration increases CKRT risk, identifying specific patient characteristics associated with higher susceptibility.IMPORTANCEThis study assesses the impact of vancomycin on the risk of continuous kidney replacement therapy (CKRT) in intensive care unit (ICU) patients with blood culture-positive infections. Utilizing deep learning-based causal inference and machine learning models, the research quantifies how vancomycin administration increases CKRT risk by an average of 7.7%. Key variables influencing susceptibility include baseline creatinine, diastolic blood pressure, heart rate, and bicarbonate levels. These findings offer insights into managing vancomycin-induced kidney risk and may inform patient-specific treatment strategies in ICU settings.

摘要

重症监护病房(ICU)中血培养呈阳性的患者发生脓毒症急性肾损伤并需要持续肾脏替代治疗(CKRT)的风险很高,尤其是在接受万古霉素治疗时。本研究开发了一种机器学习模型来预测CKRT,并使用基于深度学习的因果推断来研究万古霉素的影响。我们利用重症监护医学信息集市III数据集,分析了血培养呈阳性的ICU患者。主要结局定义为在ICU住院期间开始进行CKRT。开发机器学习模型来预测该结局。利用基于深度学习的因果推断模型来定量证明万古霉素对开始CKRT概率的影响。进行逻辑回归分析变量与万古霉素易感性之间的关系。共有1318例患者纳入分析,其中41例需要CKRT。随机森林和轻梯度提升机表现出最佳性能,受试者操作特征曲线的曲线下面积值分别为0.905和0.886。基于深度学习的因果推断模型表明,在整个数据集中给予万古霉素时,CKRT发生概率平均增加7.7%。此外,年龄较小、舒张压较低、心率较高、基线肌酐较高和碳酸氢盐水平较低会增加对万古霉素治疗产生CKRT应用的概率。基于深度学习的因果推断模型表明,给予万古霉素会增加CKRT风险,识别出与较高易感性相关的特定患者特征。

重要性

本研究评估了万古霉素对血培养阳性感染的重症监护病房(ICU)患者进行持续肾脏替代治疗(CKRT)风险的影响。利用基于深度学习的因果推断和机器学习模型,该研究量化了给予万古霉素如何使CKRT风险平均增加7.7%。影响易感性的关键变量包括基线肌酐、舒张压、心率和碳酸氢盐水平。这些发现为管理万古霉素引起的肾脏风险提供了见解,并可能为ICU环境中针对特定患者的治疗策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e18f/11705918/638e0135ffa1/spectrum.02662-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验