Suppr超能文献

薪酬和说明对众包研究人员流失的影响。

Effects of pay rate and instructions on attrition in crowdsourcing research.

机构信息

Department of Psychological Sciences, Auburn University, Auburn, AL, United States of America.

Department of Psychology, University of Florida, Gainesville, FL, United States of America.

出版信息

PLoS One. 2023 Oct 4;18(10):e0292372. doi: 10.1371/journal.pone.0292372. eCollection 2023.

Abstract

Researchers in social sciences increasingly rely on crowdsourcing marketplaces such as Amazon Mechanical Turk (MTurk) and Prolific to facilitate rapid, low-cost data collection from large samples. However, crowdsourcing suffers from high attrition, threatening the validity of crowdsourced studies. Separate studies have demonstrated that (1) higher pay rates and (2) additional instructions-i.e., informing participants about task requirements, asking for personal information, and describing the negative impact of attrition on research quality-can reduce attrition rates with MTurk participants. The present study extended research on these possible remedies for attrition to Prolific, another crowdsourcing marketplace with strict requirements for participant pay. We randomly assigned 225 participants to one of four groups. Across groups, we evaluated effects of pay rates commensurate with or double the US minimum wage, expanding the upper range of this independent variable; two groups also received additional instructions. Higher pay reduced attrition and correlated with more accurate performance on experimental tasks but we observed no effect of additional instructions. Overall, our findings suggest that effects of increased pay on attrition generalize to higher minimum pay rates and across crowdsourcing platforms. In contrast, effects of additional instructions might not generalize across task durations, task types, or crowdsourcing platforms.

摘要

社会科学研究人员越来越多地依赖众包市场,如亚马逊 Mechanical Turk(MTurk)和 Prolific,以从大量样本中快速、低成本地收集数据。然而,众包存在较高的流失率,这威胁到众包研究的有效性。一些独立的研究表明,(1)更高的报酬率和(2)额外的说明——即告知参与者任务要求、要求个人信息、并描述流失对研究质量的负面影响——可以降低 MTurk 参与者的流失率。本研究将这些针对流失的可能补救措施的研究扩展到了 Prolific,这是另一个众包市场,对参与者报酬有严格的要求。我们随机将 225 名参与者分配到四个组中的一个。在各组中,我们评估了与美国最低工资相称或翻倍的报酬率对流失的影响,扩大了这个自变量的上限范围;两组还收到了额外的说明。更高的报酬降低了流失率,并与实验任务的更准确表现相关,但我们没有观察到额外说明的效果。总的来说,我们的发现表明,增加报酬对流失的影响可以推广到更高的最低工资率和众包平台。相比之下,额外说明的效果可能不会推广到任务持续时间、任务类型或众包平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37a3/10550147/b1ba0a80ab91/pone.0292372.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验