Suppr超能文献

利用隐马尔可夫模型推断新冠疫情期间学区的学习模式。

Inferring school district learning modalities during the COVID-19 pandemic with a hidden Markov model.

作者信息

Panaggio Mark J, Fang Mike, Bang Hyunseung, Armstrong Paige A, Binder Alison M, Grass Julian E, Magid Jake, Papazian Marc, Shapiro-Mendoza Carrie K, Parks Sharyn E

机构信息

Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.

Palantir Technologies, Denver, Colorado, United States of America.

出版信息

PLoS One. 2023 Oct 4;18(10):e0292354. doi: 10.1371/journal.pone.0292354. eCollection 2023.

Abstract

During the COVID-19 pandemic, many public schools across the United States shifted from fully in-person learning to alternative learning modalities such as hybrid and fully remote learning. In this study, data from 14,688 unique school districts from August 2020 to June 2021 were collected to track changes in the proportion of schools offering fully in-person, hybrid and fully remote learning over time. These data were provided by Burbio, MCH Strategic Data, the American Enterprise Institute's Return to Learn Tracker and individual state dashboards. Because the modalities reported by these sources were incomplete and occasionally misaligned, a model was needed to combine and deconflict these data to provide a more comprehensive description of modalities nationwide. A hidden Markov model (HMM) was used to infer the most likely learning modality for each district on a weekly basis. This method yielded higher spatiotemporal coverage than any individual data source and higher agreement with three of the four data sources than any other single source. The model output revealed that the percentage of districts offering fully in-person learning rose from 40.3% in September 2020 to 54.7% in June of 2021 with increases across 45 states and in both urban and rural districts. This type of probabilistic model can serve as a tool for fusion of incomplete and contradictory data sources in order to obtain more reliable data in support of public health surveillance and research efforts.

摘要

在新冠疫情期间,美国许多公立学校从完全面对面授课转变为混合式和完全远程学习等其他学习模式。在本研究中,收集了2020年8月至2021年6月期间来自14688个不同学区的数据,以追踪随着时间推移提供完全面对面、混合式和完全远程学习的学校比例的变化。这些数据由Burbio、MCH战略数据、美国企业研究所的返校学习追踪器以及各个州的仪表盘提供。由于这些来源报告的模式不完整且偶尔不一致,因此需要一个模型来合并这些数据并消除冲突,以更全面地描述全国范围内的学习模式。使用隐马尔可夫模型(HMM)每周推断每个学区最可能的学习模式。该方法产生的时空覆盖率高于任何单个数据源,并且与四个数据源中的三个的一致性高于任何其他单一来源。模型输出显示,提供完全面对面学习的学区比例从2020年9月的40.3%上升到2021年6月的54.7%,45个州以及城市和农村地区均有增长。这种概率模型可以作为一种工具,用于融合不完整和相互矛盾的数据源,以获得更可靠的数据,支持公共卫生监测和研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c13f/10550109/5760341a8b8f/pone.0292354.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验