Bonini John, Flick Johannes
Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States.
J Chem Theory Comput. 2022 May 10;18(5):2764-2773. doi: 10.1021/acs.jctc.1c01035. Epub 2022 Apr 11.
Recent years have seen significant developments in the study of strong light-matter coupling including the control of chemical reactions by altering the vibrational normal modes of molecules. In the vibrational strong coupling regime, the normal modes of the system become hybrid modes which mix nuclear, electronic, and photonic degrees of freedom. First-principles methods capable of treating light and matter degrees of freedom on the same level of theory are an important tool in understanding such systems. In this work, we develop and apply a generalized force constant matrix approach to the study of mixed vibration-photon (vibro-polariton) states of molecules based on the cavity Born-Oppenheimer approximation and quantum-electrodynamical density-functional theory. With this method, vibro-polariton modes and infrared spectra can be computed via linear-response techniques analogous to those widely used for conventional vibrations and phonons. We also develop an accurate model that highlights the consistent treatment of cavity-coupled electrons in the vibrational strong coupling regime. These electronic effects appear as new terms previously disregarded by simpler models. This effective model also allows for an accurate extrapolation of single and two molecule calculations to the collective strong coupling limit of hundreds of molecules. We benchmark these approaches for single and many CO molecules coupled to a single photon mode and the iron pentacarbonyl Fe(CO) molecule coupled to a few photon modes. Our results are the first ab initio results for collective vibrational strong coupling effects. This framework for efficient computations of vibro-polaritons paves the way to a systematic description and improved understanding of the behavior of chemical systems in vibrational strong coupling.
近年来,强光与物质耦合的研究取得了重大进展,包括通过改变分子的振动简正模式来控制化学反应。在振动强耦合 regime 中,系统的简正模式成为混合模式,混合了核、电子和光子自由度。能够在同一理论水平上处理光和物质自由度的第一性原理方法是理解此类系统的重要工具。在这项工作中,我们基于腔玻恩 - 奥本海默近似和量子电动力学密度泛函理论,开发并应用广义力常数矩阵方法来研究分子的混合振动 - 光子(振动极化激元)态。通过这种方法,振动极化激元模式和红外光谱可以通过类似于广泛用于传统振动和声子的线性响应技术来计算。我们还开发了一个精确的模型,该模型突出了在振动强耦合 regime 中对腔耦合电子的一致处理。这些电子效应表现为先前被更简单模型忽略的新项。这个有效模型还允许将单分子和双分子计算准确外推到数百个分子的集体强耦合极限。我们对单分子和多分子 CO 耦合到单光子模式以及五羰基铁 Fe(CO) 分子耦合到几个光子模式的这些方法进行了基准测试。我们的结果是关于集体振动强耦合效应的首个从头算结果。这种用于高效计算振动极化激元的框架为系统描述和更好地理解振动强耦合中化学系统的行为铺平了道路。