Schnappinger Thomas, Kowalewski Markus
Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
J Phys Chem Lett. 2024 Aug 1;15(30):7700-7707. doi: 10.1021/acs.jpclett.4c01810. Epub 2024 Jul 23.
As pioneering experiments have shown, strong coupling between molecular vibrations and light modes in an optical cavity can significantly alter molecular properties and even affect chemical reactivity. However, the current theoretical description is limited and far from complete. To explore the origin of this exciting observation, we investigate how the molecular structure changes under strong light-matter coupling using an ab initio method based on the cavity Born-Oppenheimer Hartree-Fock ansatz. By optimizing HO and HO resonantly coupled to cavity modes, we study the importance of reorientation and geometric relaxation. In addition, we show that the inclusion of one or two cavity modes can change the observed results. On the basis of our findings, we derive a simple concept to estimate the effect of the cavity interaction on the molecular geometry using the molecular polarizability and the dipole moments.
正如开创性实验所表明的那样,光学腔中分子振动与光模式之间的强耦合能够显著改变分子性质,甚至影响化学反应活性。然而,目前的理论描述有限且远未完善。为了探究这一令人兴奋的观测结果的起源,我们使用基于腔玻恩 - 奥本海默哈特里 - 福克假设的从头算方法,研究强光 - 物质耦合下分子结构如何变化。通过优化与腔模式共振耦合的HO和HO,我们研究了重新取向和几何弛豫的重要性。此外,我们表明包含一个或两个腔模式会改变观测结果。基于我们的发现,我们推导出一个简单的概念,利用分子极化率和偶极矩来估计腔相互作用对分子几何结构的影响。