Suppr超能文献

酮体生成促进对铜绿假单胞菌肺部感染的耐受。

Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection.

机构信息

Department of Pediatrics, Columbia University, New York, NY 10032, USA.

Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA.

出版信息

Cell Metab. 2023 Oct 3;35(10):1767-1781.e6. doi: 10.1016/j.cmet.2023.09.001.

Abstract

Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.

摘要

铜绿假单胞菌是肺部感染的常见病因。作为一种革兰氏阴性病原体,它可以引发迅速而高度破坏性的炎症反应;然而,大多数宿主对细菌负荷产生耐受性,从而发展为慢性感染。我们利用肺炎的小鼠模型证明,从炎症到疾病耐受的这种转变是由酮体生成促进的。在肺部感染时,肝脏会产生酮体并循环到肺部,从而选择无法表达表面脂多糖(LPS)的铜绿假单胞菌菌株。这种酮体适应的 LPS 菌株无法激活糖酵解和组织损伤细胞因子,而是促进脂肪的线粒体分解代谢和氧化磷酸化(OXPHOS),从而维持气道稳态。在肺部,铜绿假单胞菌利用宿主免疫代谢物衣康酸进一步刺激酮体生成。这种环境使宿主-铜绿假单胞菌共存成为可能,既支持细菌的病理适应性变化,又通过 OXPHOS 维持呼吸完整性。

相似文献

1
Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection.
Cell Metab. 2023 Oct 3;35(10):1767-1781.e6. doi: 10.1016/j.cmet.2023.09.001.
2
Airway immunometabolites fuel Pseudomonas aeruginosa infection.
Respir Res. 2020 Dec 10;21(1):326. doi: 10.1186/s12931-020-01591-x.
3
Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation.
Cell Metab. 2020 Jun 2;31(6):1091-1106.e6. doi: 10.1016/j.cmet.2020.04.017. Epub 2020 May 18.
5
Ketogenesis favors oxidative phosphorylation to promote disease tolerance.
Trends Endocrinol Metab. 2024 Mar;35(3):177-179. doi: 10.1016/j.tem.2024.01.006. Epub 2024 Jan 31.
9
Consumption of Airway Metabolites Promotes Lung Infection.
Pathogens. 2021 Jul 29;10(8):957. doi: 10.3390/pathogens10080957.
10
Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection.
J Innate Immun. 2017;9(3):250-261. doi: 10.1159/000455857. Epub 2017 Feb 22.

引用本文的文献

2
A host-pathogen metabolic synchrony that facilitates disease tolerance.
Nat Commun. 2025 Apr 19;16(1):3729. doi: 10.1038/s41467-025-59134-1.
3
Influence of cell bioenergetics on host-pathogen interaction in the lung.
Front Immunol. 2025 Apr 3;16:1549293. doi: 10.3389/fimmu.2025.1549293. eCollection 2025.
4
Pathogen adaptation to lung metabolites.
Curr Opin Microbiol. 2025 Jun;85:102608. doi: 10.1016/j.mib.2025.102608. Epub 2025 Apr 2.
5
The flux of energy in critical illness and the obesity paradox.
Physiol Rev. 2025 Jul 1;105(3):1487-1552. doi: 10.1152/physrev.00029.2024. Epub 2025 Feb 21.
7
Case report: Carnivore-ketogenic diet for the treatment of inflammatory bowel disease: a case series of 10 patients.
Front Nutr. 2024 Sep 2;11:1467475. doi: 10.3389/fnut.2024.1467475. eCollection 2024.
8
Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0017122. doi: 10.1128/mmbr.00171-22. Epub 2024 Sep 4.
9
Immunometabolites Direct the Pathogenesis of Bacterial Infection.
J Innate Immun. 2024;16(1):367-369. doi: 10.1159/000540093. Epub 2024 Jul 1.
10
Glucose restriction in antiviral defence.
Nat Immunol. 2024 Jun;25(6):941-943. doi: 10.1038/s41590-024-01849-2.

本文引用的文献

1
The mitochondrial Hsp70 controls the assembly of the FF-ATP synthase.
Nat Commun. 2023 Jan 3;14(1):39. doi: 10.1038/s41467-022-35720-5.
3
Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung.
J Pediatric Infect Dis Soc. 2022 Sep 7;11(Supplement_2):S23-S31. doi: 10.1093/jpids/piac073.
4
Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19.
Nature. 2022 Sep;609(7928):801-807. doi: 10.1038/s41586-022-05128-8. Epub 2022 Jul 28.
5
Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis.
Mol Metab. 2022 Jul;61:101494. doi: 10.1016/j.molmet.2022.101494. Epub 2022 Apr 12.
6
The role of itaconate in host defense and inflammation.
J Clin Invest. 2022 Jan 18;132(2). doi: 10.1172/JCI148548.
8
Ketogenic Diets and Chronic Disease: Weighing the Benefits Against the Risks.
Front Nutr. 2021 Jul 16;8:702802. doi: 10.3389/fnut.2021.702802. eCollection 2021.
9
The metabolism-modulating activity of IL-17 signaling in health and disease.
J Exp Med. 2021 May 3;218(5). doi: 10.1084/jem.20202191.
10
Itaconate confers tolerance to late NLRP3 inflammasome activation.
Cell Rep. 2021 Mar 9;34(10):108756. doi: 10.1016/j.celrep.2021.108756.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验