Suppr超能文献

在前列腺癌调强放疗中,通过兆伏级计算机断层扫描进行人工智能驱动的分次间器官变化监测的可行性。

Feasibility of artificial intelligence-driven interfractional monitoring of organ changes by mega-voltage computed tomography in intensity-modulated radiotherapy of prostate cancer.

作者信息

Lee Yohan, Choi Hyun Joon, Kim Hyemi, Kim Sunghyun, Kim Mi Sun, Cha Hyejung, Eum Young Ju, Cho Hyosung, Park Jeong Eun, You Sei Hwan

机构信息

Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea.

Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea.

出版信息

Radiat Oncol J. 2023 Sep;41(3):186-198. doi: 10.3857/roj.2023.00444. Epub 2023 Sep 25.

Abstract

PURPOSE

High-dose radiotherapy (RT) for localized prostate cancer requires careful consideration of target position changes and adjacent organs-at-risk (OARs), such as the rectum and bladder. Therefore, daily monitoring of target position and OAR changes is crucial in minimizing interfractional dosimetric uncertainties. For efficient monitoring of the internal condition of patients, we assessed the feasibility of an auto-segmentation of OARs on the daily acquired images, such as megavoltage computed tomography (MVCT), via a commercial artificial intelligence (AI)-based solution in this study.

MATERIALS AND METHODS

We collected MVCT images weekly during the entire course of RT for 100 prostate cancer patients treated with the helical TomoTherapy system. Based on the manually contoured body outline, the bladder including prostate area, and rectal balloon regions for the 100 MVCT images, we trained the commercially available fully convolutional (FC)-DenseNet model and tested its auto-contouring performance.

RESULTS

Based on the optimally determined hyperparameters, the FC-DenseNet model successfully auto-contoured all regions of interest showing high dice similarity coefficient (DSC) over 0.8 and a small mean surface distance (MSD) within 1.43 mm in reference to the manually contoured data. With this well-trained AI model, we have efficiently monitored the patient's internal condition through six MVCT scans, analyzing DSC, MSD, centroid, and volume differences.

CONCLUSION

We have verified the feasibility of utilizing a commercial AI-based model for auto-segmentation with low-quality daily MVCT images. In the future, we will establish a fast and accurate auto-segmentation and internal organ monitoring system for efficiently determining the time for adaptive replanning.

摘要

目的

局部前列腺癌的大剂量放疗(RT)需要仔细考虑靶区位置变化以及相邻的危及器官(OARs),如直肠和膀胱。因此,每日监测靶区位置和OARs变化对于将分次间剂量学不确定性降至最低至关重要。为了有效监测患者的内部状况,在本研究中,我们通过基于商业人工智能(AI)的解决方案评估了在每日获取的图像(如兆伏级计算机断层扫描(MVCT))上对OARs进行自动分割的可行性。

材料与方法

我们收集了100例接受螺旋断层放疗系统治疗的前列腺癌患者在整个放疗过程中每周的MVCT图像。基于100幅MVCT图像的手动勾勒的身体轮廓、包括前列腺区域的膀胱以及直肠气囊区域,我们训练了市售的全卷积(FC)-密集连接网络模型,并测试了其自动轮廓绘制性能。

结果

基于最优确定的超参数,FC-密集连接网络模型成功地对所有感兴趣区域进行了自动轮廓绘制,与手动勾勒的数据相比,显示出超过0.8的高骰子相似系数(DSC)和1.43毫米以内的小平均表面距离(MSD)。利用这个训练良好的AI模型,我们通过六次MVCT扫描有效地监测了患者的内部状况,分析了DSC、MSD、质心和体积差异。

结论

我们已经验证了利用基于商业AI的模型对低质量的每日MVCT图像进行自动分割的可行性。未来,我们将建立一个快速准确的自动分割和内部器官监测系统,以有效地确定自适应重新计划的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21ec/10556843/844fefd7606e/roj-2023-00444f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验