Abramoff Michael D, Whitestone Noelle, Patnaik Jennifer L, Rich Emily, Ahmed Munir, Husain Lutful, Hassan Mohammad Yeadul, Tanjil Md Sajidul Huq, Weitzman Dena, Dai Tinglong, Wagner Brandie D, Cherwek David H, Congdon Nathan, Islam Khairul
University of Iowa, Iowa City, Iowa, USA.
Digital Diagnostics Inc, Coralville, Iowa, USA.
NPJ Digit Med. 2023 Oct 4;6(1):184. doi: 10.1038/s41746-023-00931-7.
Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37-1.80) than control (1.14 encounters/hour, 95% CI: 1.02-1.25), p < 0.00; the secondary endpoint (productivity in all patients) is also met. Autonomous AI increases healthcare system productivity, which could potentially increase access and reduce health disparities. ClinicalTrials.gov NCT05182580.
自主人工智能(AI)有望提高医疗保健效率,但缺乏实际证据。我们开发了一种诊所效率模型,用于为一项预先注册的整群随机临床试验生成可检验的假设和研究设计,在该试验中,我们检验了以下假设:一种先前经验证、获得美国食品药品监督管理局(FDA)授权用于糖尿病眼部检查的人工智能,可提高糖尿病患者诊所的效率(每位专科医生每小时完成的护理诊疗次数)。在此,我们报告,105个诊日被整群随机分为干预组(使用人工智能诊断;51天;494例患者)或对照组(不使用人工智能诊断;54天;499例患者)。预定的主要终点得到满足:人工智能的效率比对照组高40%(1.59次诊疗/小时,95%置信区间[CI]:1.37 - 1.80)(对照组为1.14次诊疗/小时,95% CI:1.02 - 1.25),p < 0.00;次要终点(所有患者的效率)也得到满足。自主人工智能提高了医疗系统的效率,这可能会增加医疗可及性并减少健康差距。ClinicalTrials.gov标识符:NCT05182580。