School of Chemistry and Chemical Engineering, University of Surrey, Guildford, UK.
Unilever R&D Colworth, Bedford, UK.
Toxicol Mech Methods. 2024 Feb;34(2):164-175. doi: 10.1080/15376516.2023.2265462. Epub 2024 Jan 29.
Comprehensive analysis of multi-omics data can reveal alterations in regulatory pathways induced by cellular exposure to chemicals by characterizing biological processes at the molecular level. Data-driven omics analysis, conducted in a dose-dependent or dynamic manner, can facilitate comprehending toxicity mechanisms. This study introduces a novel multi-omics data analysis designed to concurrently examine dose-dependent and temporal patterns of cellular responses to chemical perturbations. This analysis, encompassing preliminary exploration, pattern deconstruction, and network reconstruction of multi-omics data, provides a comprehensive perspective on the dynamic behaviors of cells exposed to varying levels of chemical stimuli. Importantly, this analysis is adaptable to any number of omics layers, including site-specific phosphoproteomics. We implemented this analysis on multi-omics data obtained from HepG2 cells exposed to a range of caffeine doses over varying durations and identified six response patterns, along with their associated biomolecules and pathways. Our study demonstrates the effectiveness of the proposed multi-omics data analysis in capturing multidimensional patterns of cellular response to chemical perturbation, enhancing understanding of pathway regulation for chemical risk assessment.
综合分析多组学数据可以通过在分子水平上描述生物学过程,揭示细胞暴露于化学物质后调控途径的变化。以剂量依赖或动态的方式进行数据驱动的组学分析,可以帮助理解毒性机制。本研究介绍了一种新的多组学数据分析方法,旨在同时检查细胞对化学干扰的剂量依赖性和时变反应模式。该分析包括多组学数据的初步探索、模式解构和网络重建,为暴露于不同水平化学刺激的细胞的动态行为提供了全面的视角。重要的是,该分析适用于任何数量的组学层面,包括特定部位的磷酸化蛋白质组学。我们将该分析应用于 HepG2 细胞暴露于不同剂量咖啡因不同时间的多组学数据,确定了六个反应模式及其相关的生物分子和途径。我们的研究表明,所提出的多组学数据分析方法能够有效地捕捉细胞对化学干扰的多维反应模式,增强对化学风险评估中途径调控的理解。