Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Argonne National Laboratory, Lemont, Illinois.
Biophys J. 2023 Nov 7;122(21):4254-4263. doi: 10.1016/j.bpj.2023.09.021. Epub 2023 Oct 4.
Type III interferons (IFNλs) are cytokines with critical roles in the immune system and are attractive therapeutic candidates due to their tissue-specific activity. Despite entering several clinical trials, results have demonstrated limited efficacy and potency, partially attributed to low-affinity protein-protein interactions (PPIs) responsible for receptor complex formation. Subsequently, structural studies of the native IFNλ signaling complexes remain inaccessible. While protein engineering can overcome affinity limitations, tools to investigate low-affinity systems like these remain limited. To provide insights into previous efforts to strengthen the PPIs within this complex, we perform a molecular analysis of the extracellular ternary complexes of IFNλ3 using both computational and experimental approaches. We first use molecular simulations and modeling to quantify differences in PPIs and residue strain fluctuations, generate detailed free energy landscapes, and reveal structural differences between an engineered, high-affinity complex, and a model of the wild-type, low-affinity complex. This analysis illuminates distinct behaviors of these ligands, yielding mechanistic insights into IFNλ complex formation. We then apply these computational techniques in protein engineering and design by utilizing simulation data to identify hotspots of interaction to rationally engineer the native cytokine-receptor complex for increased stability. These simulations are then validated by experimental techniques, showing that a single mutation at a computationally predicted site of interaction between the two receptors increases PPIs and improves complex formation for all IFNλs. This study highlights the power of molecular dynamics simulations for protein engineering and design as applied to the IFNλ family but also presents a potential tool for analysis and engineering of other systems with low-affinity PPIs.
III 型干扰素(IFNλs)是在免疫系统中具有关键作用的细胞因子,由于其组织特异性活性,成为有吸引力的治疗候选物。尽管进入了几项临床试验,但结果表明其疗效和效力有限,部分原因是负责受体复合物形成的低亲和力蛋白-蛋白相互作用(PPIs)。随后,天然 IFNλ 信号转导复合物的结构研究仍然难以获得。虽然蛋白质工程可以克服亲和力限制,但用于研究这些低亲和力系统的工具仍然有限。为了深入了解以前在该复合物中增强 PPIs 的努力,我们使用计算和实验方法对 IFNλ3 的细胞外三元复合物进行了分子分析。我们首先使用分子模拟和建模来量化 PPIs 和残基应变波动的差异,生成详细的自由能景观,并揭示工程化高亲和力复合物与野生型低亲和力复合物模型之间的结构差异。这种分析揭示了这些配体的不同行为,为 IFNλ 复合物形成提供了机制见解。然后,我们通过利用模拟数据在蛋白质工程和设计中应用这些计算技术,确定相互作用的热点,从而合理设计天然细胞因子-受体复合物以提高稳定性。然后通过实验技术验证这些模拟,表明在两个受体之间的计算预测的相互作用位点上的单个突变增加了 PPIs 并改善了所有 IFNλ 的复合物形成。这项研究强调了分子动力学模拟在蛋白质工程和设计中的应用对于 IFNλ 家族的强大功能,但也为具有低亲和力 PPIs 的其他系统的分析和工程提供了潜在的工具。