Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.
UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA.
J Cell Sci. 2023 Oct 1;136(19). doi: 10.1242/jcs.261130. Epub 2023 Oct 5.
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
推动组织形态发生的紧急细胞行为是基因调控网络指令、局部组织微环境的力学和信号的综合产物。这些离散输入如何交叉协调不同的形态发生事件是一个关键的研究领域。器官芯片技术彻底改变了在体外构建和操作具有器官型三维结构的小型化人体组织的能力。器官芯片平台的应用已经从概念验证的组织工程逐渐发展到发现生物学,进一步加深了我们对跨越生物尺度的分子和力学机制的理解,这些机制协调组织形态发生。在这里,我们提供了利用器官芯片系统研究组织形态发生的生物学框架,并强调了最近的一些例子,其中器官芯片和相关的微生理系统在不同的形态发生环境中提供了新的机制见解。我们还强调了将器官芯片平台用作细胞和发育生物学新兴测试平台的用途。