Suppr超能文献

'芯片'技术在形态发生中的应用 - 器官芯片技术在研究组织形态发生中的应用。

'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis.

机构信息

Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.

UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA.

出版信息

J Cell Sci. 2023 Oct 1;136(19). doi: 10.1242/jcs.261130. Epub 2023 Oct 5.

Abstract

Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.

摘要

推动组织形态发生的紧急细胞行为是基因调控网络指令、局部组织微环境的力学和信号的综合产物。这些离散输入如何交叉协调不同的形态发生事件是一个关键的研究领域。器官芯片技术彻底改变了在体外构建和操作具有器官型三维结构的小型化人体组织的能力。器官芯片平台的应用已经从概念验证的组织工程逐渐发展到发现生物学,进一步加深了我们对跨越生物尺度的分子和力学机制的理解,这些机制协调组织形态发生。在这里,我们提供了利用器官芯片系统研究组织形态发生的生物学框架,并强调了最近的一些例子,其中器官芯片和相关的微生理系统在不同的形态发生环境中提供了新的机制见解。我们还强调了将器官芯片平台用作细胞和发育生物学新兴测试平台的用途。

相似文献

1
'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis.
J Cell Sci. 2023 Oct 1;136(19). doi: 10.1242/jcs.261130. Epub 2023 Oct 5.
3
Organ Chips and Visualization of Biological Systems.
Adv Exp Med Biol. 2023;1199:155-183. doi: 10.1007/978-981-32-9902-3_8.
5
Thinking in 3 dimensions: philosophies of the microenvironment in organoids and organs-on-chip.
Hist Philos Life Sci. 2023 Mar 22;45(2):14. doi: 10.1007/s40656-023-00560-z.
6
Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies.
Adv Healthc Mater. 2018 Jan;7(2). doi: 10.1002/adhm.201700506. Epub 2017 Oct 16.
7
Recent developments in organ-on-a-chip technology for cardiovascular disease research.
Anal Bioanal Chem. 2023 Jul;415(18):3911-3925. doi: 10.1007/s00216-023-04596-9. Epub 2023 Mar 3.
8
From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications.
ACS Sens. 2024 Jul 26;9(7):3466-3488. doi: 10.1021/acssensors.4c00004. Epub 2024 Jul 11.
9
Developmentally inspired human 'organs on chips'.
Development. 2018 May 18;145(16):dev156125. doi: 10.1242/dev.156125.
10
biosensing technologies for an organ-on-a-chip.
Biofabrication. 2023 Aug 17;15(4). doi: 10.1088/1758-5090/aceaae.

本文引用的文献

1
Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures.
Nat Commun. 2023 May 30;14(1):3128. doi: 10.1038/s41467-023-37953-4.
2
The developing murine kidney actively negotiates geometric packing conflicts to avoid defects.
Dev Cell. 2023 Jan 23;58(2):110-120.e5. doi: 10.1016/j.devcel.2022.12.008.
5
Programming multicellular assembly with synthetic cell adhesion molecules.
Nature. 2023 Feb;614(7946):144-152. doi: 10.1038/s41586-022-05622-z. Epub 2022 Dec 12.
6
Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues.
Nat Commun. 2022 Sep 14;13(1):5400. doi: 10.1038/s41467-022-33115-0.
7
3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
Nat Protoc. 2022 Mar;17(3):910-939. doi: 10.1038/s41596-021-00674-3. Epub 2022 Feb 2.
8
Transmural pressure signals through retinoic acid to regulate lung branching.
Development. 2022 Jan 15;149(2). doi: 10.1242/dev.199726. Epub 2022 Jan 20.
9
Tissue geometry drives deterministic organoid patterning.
Science. 2022 Jan 7;375(6576):eaaw9021. doi: 10.1126/science.aaw9021.
10
Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries.
Biomaterials. 2022 Jan;280:121248. doi: 10.1016/j.biomaterials.2021.121248. Epub 2021 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验