Zheng Zhiling, Rong Zichao, Rampal Nakul, Borgs Christian, Chayes Jennifer T, Yaghi Omar M
Department of Chemistry, Kavli Energy Nanoscience Institute, and Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, CA-94720, United States.
Department of Electrical Engineering and Computer Sciences and Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, CA-94720, United States.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202311983. doi: 10.1002/anie.202311983. Epub 2023 Oct 13.
We present a new framework integrating the AI model GPT-4 into the iterative process of reticular chemistry experimentation, leveraging a cooperative workflow of interaction between AI and a human researcher. This GPT-4 Reticular Chemist is an integrated system composed of three phases. Each of these utilizes GPT-4 in various capacities, wherein GPT-4 provides detailed instructions for chemical experimentation and the human provides feedback on the experimental outcomes, including both success and failures, for the in-context learning of AI in the next iteration. This iterative human-AI interaction enabled GPT-4 to learn from the outcomes, much like an experienced chemist, by a prompt-learning strategy. Importantly, the system is based on natural language for both development and operation, eliminating the need for coding skills, and thus, make it accessible to all chemists. Our collaboration with GPT-4 Reticular Chemist guided the discovery of an isoreticular series of MOFs, with each synthesis fine-tuned through iterative feedback and expert suggestions. This workflow presents a potential for broader applications in scientific research by harnessing the capability of large language models like GPT-4 to enhance the feasibility and efficiency of research activities.
我们提出了一个新框架,将人工智能模型GPT-4集成到网状化学实验的迭代过程中,利用人工智能与人类研究人员之间的协作工作流程。这个GPT-4网状化学家是一个由三个阶段组成的集成系统。每个阶段都以各种方式利用GPT-4,其中GPT-4为化学实验提供详细指导,而人类则为人工智能在下一次迭代中的上下文学习提供关于实验结果(包括成功和失败)的反馈。这种人类与人工智能的迭代交互使GPT-4能够通过提示学习策略,像经验丰富的化学家一样从结果中学习。重要的是,该系统在开发和操作上都基于自然语言,无需编码技能,因此所有化学家都可以使用。我们与GPT-4网状化学家的合作指导发现了一系列同构金属有机框架,每次合成都通过迭代反馈和专家建议进行微调。这种工作流程通过利用GPT-4等大语言模型的能力来提高研究活动的可行性和效率,展现了在科学研究中更广泛应用的潜力。