Li Yuchen, Wang Meng, Ma Ding
Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Fundam Res. 2025 Mar 25;5(3):923-926. doi: 10.1016/j.fmre.2025.03.012. eCollection 2025 May.
Plastic waste poses a global challenge, driving interest in upcycling strategies to convert waste into value-added products. The interdisciplinary nature of plastic upcycling research-spanning fields such as chemistry, material science, and environmental science-has led to a surge in publications, making it challenging to synthesize key insights. Large language models (LLMs) offer transformative potential for literature analysis, enabling rapid, scalable, and consistent analysis across vast datasets. In this perspective, we evaluated the use of LLMs in 883 research articles about plastic upcycling, demonstrating their efficiency and accuracy in classifying plastics, identifying upcycling pathways, and visualizing trends. LLMs achieved performance comparable to human experts in well-defined tasks while completing analysis in a fraction of the time. We highlight the value of LLM-driven insights for guiding future research and propose a collaborative framework among researchers, publishers, and technology developers to optimize LLM applications. By integrating LLMs into workflows, the scientific community can accelerate innovation in tackling environmental challenges.
塑料垃圾构成了一项全球性挑战,激发了人们对升级再造策略的兴趣,即将垃圾转化为增值产品。塑料升级再造研究具有跨学科性质,涵盖化学、材料科学和环境科学等领域,这导致了相关出版物数量激增,使得综合关键见解变得具有挑战性。大语言模型(LLMs)为文献分析提供了变革性潜力,能够对海量数据集进行快速、可扩展且一致的分析。从这个角度来看,我们评估了大语言模型在883篇关于塑料升级再造的研究文章中的应用,展示了它们在塑料分类、识别升级再造途径以及可视化趋势方面的效率和准确性。在明确的任务中,大语言模型取得了与人类专家相当的表现,同时完成分析的时间仅为人类专家的一小部分。我们强调了大语言模型驱动的见解对指导未来研究的价值,并提出了一个研究人员、出版商和技术开发者之间的合作框架,以优化大语言模型的应用。通过将大语言模型整合到工作流程中,科学界可以加速应对环境挑战方面的创新。