Taylor Nicholas G, Reis Marcus H, Varner Travis P, Rapp Johann L, Sarabia Alexis, Leibfarth Frank A
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Polym Chem. 2022 Sep 7;13(33):4798-4808. doi: 10.1039/D2PY00603K. Epub 2022 Aug 8.
Reversible-deactivation radical polymerizations are privileged approaches for the synthesis of functional and hybrid materials. A bottleneck for conducting these processes is the need to maintain oxygen free conditions. Herein we report a broadly applicable approach to "polymerize through" oxygen using the synergistic combination of two radical initiators having different rates of homolysis. The monitoring of the concentrations of oxygen and monomer simultaneously provided insight into the function of the two initiators and enabled the identification of conditions to effectively remove dissolved oxygen and control polymerization under open-to-air conditions. By understanding how the surface area to volume ratio of reaction vessels influence open-to-air polymerizations, well-defined polymers were produced using acrylate, styrenic, and methacrylate monomers, which each represent an expansion of scope for the "polymerizing through" oxygen approach. Demonstration of this method in tubular reactors using continuous flow chemistry provided a more complete structure-reactivity understanding of how reaction headspace influences PTO RAFT polymerizations.
可逆失活自由基聚合是合成功能材料和杂化材料的优选方法。进行这些过程的一个瓶颈是需要保持无氧条件。在此,我们报告了一种广泛适用的方法,即使用两种具有不同均裂速率的自由基引发剂的协同组合,“通过氧气”进行聚合。同时监测氧气和单体的浓度,深入了解了两种引发剂的功能,并确定了在开放空气条件下有效去除溶解氧和控制聚合反应的条件。通过了解反应容器的表面积与体积比如何影响开放空气聚合反应,使用丙烯酸酯、苯乙烯和甲基丙烯酸酯单体制备了结构明确的聚合物,每种单体都代表了“通过氧气”聚合方法的适用范围扩展。在使用连续流化学的管式反应器中对该方法进行的演示,更全面地理解了反应顶空如何影响通过氧气的可逆加成-断裂链转移(PTO RAFT)聚合反应的结构-反应活性关系。