Suppr超能文献

两种猕猴桃属植物中热激转录因子基因家族的全基因组鉴定

Genome-wide identification of the heat shock transcription factor gene family in two kiwifruit species.

作者信息

Tu Jing, Abid Muhammad, Luo Juan, Zhang Yi, Yang Endian, Cai Xinxia, Gao Puxin, Huang Hongwen, Wang Zupeng

机构信息

College of Life Science, Nanchang University, Nanchang, China.

Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China.

出版信息

Front Plant Sci. 2023 Sep 20;14:1075013. doi: 10.3389/fpls.2023.1075013. eCollection 2023.

Abstract

High temperatures have a significant impact on plant growth and metabolism. In recent years, the fruit industry has faced a serious threat due to high-temperature stress on fruit plants caused by global warming. In the present study, we explored the molecular regulatory mechanisms that contribute to high-temperature tolerance in kiwifruit. A total of 36 genes were identified in the (Ac) genome, while 41 genes were found in the (Ae) genome. Phylogenetic analysis revealed the clustering of kiwifruit into three distinct groups (groups A, B, and C). Synteny analysis indicated that the expansion of the gene family in the Ac and Ae genomes was primarily driven by whole genome duplication (WGD). Analysis of the gene expression profiles revealed a close relationship between the expression levels of genes and various plant tissues and stress treatments throughout fruit ripening. Subcellular localization analysis demonstrated that GFP-AcHsfA2a/AcHsfA7b and AcHsfA2a/AcHsfA7b -GFP were localized in the nucleus, while GFP-AcHsfA2a was also observed in the cytoplasm of protoplasts. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assay revealed that the majority of genes, especially , were expressed under high-temperature conditions. In conclusion, our findings establish a theoretical foundation for analyzing the potential role of in high-temperature stress tolerance in kiwifruit. This study also offers valuable information to aid plant breeders in the development of heat-stress-resistant plant materials.

摘要

高温对植物生长和代谢有重大影响。近年来,由于全球变暖对果树造成高温胁迫,水果产业面临严重威胁。在本研究中,我们探究了猕猴桃中有助于耐高温的分子调控机制。在中华猕猴桃(Ac)基因组中总共鉴定出36个基因,而在美味猕猴桃(Ae)基因组中发现了41个基因。系统发育分析显示猕猴桃热激转录因子(Hsf)聚为三个不同的组(A组、B组和C组)。共线性分析表明,Ac和Ae基因组中Hsf基因家族的扩张主要由全基因组复制(WGD)驱动。基因表达谱分析揭示了Hsf基因表达水平与整个果实成熟过程中各种植物组织及胁迫处理之间的密切关系。亚细胞定位分析表明,绿色荧光蛋白(GFP)-AcHsfA2a/AcHsfA7b和AcHsfA2a/AcHsfA7b-GFP定位于细胞核,而在原生质体的细胞质中也观察到了GFP-AcHsfA2a。实时定量聚合酶链反应(RT-qPCR)和双荧光素酶报告基因检测结果显示,大多数Hsf基因,尤其是AcHsfA2a,在高温条件下表达。总之,我们的研究结果为分析Hsf在猕猴桃耐高温胁迫中的潜在作用奠定了理论基础。本研究还为植物育种者培育抗热胁迫植物材料提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ea7/10548268/40612155eb73/fpls-14-1075013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验