School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China.
Department of Dental and Endodontic Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
Comput Biol Med. 2023 Nov;166:107519. doi: 10.1016/j.compbiomed.2023.107519. Epub 2023 Sep 25.
With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset.
随着 3D 扫描设备在口腔健康应用中捕获口腔的应用越来越普及,3D 牙科模型的质量在口腔修复学和正畸学中变得至关重要。然而,获得的点云数据通常可能稀疏,因此会丢失信息。为了解决这个问题,我们构建了一种名为 TUCNet 的高分辨率牙齿点云补全方法,用于填充稀疏和不完整的口腔点云,并输出密集和完整的牙齿点云。首先,我们提出了一种 Channel and Spatial Attentive EdgeConv(CSAE)模块,用于在点特征提取中融合局部和全局上下文。其次,我们提出了一种基于 CSAE 的点云上采样(CPCU)模块,用于逐步增加点云中的点数。TUCNet 采用基于树的方法生成完整的点云,其中子点是通过从父点进行分割过程从父点派生出来的,每个 CPCU 都通过结合注意力机制和点反卷积操作来学习每个父点的上采样模式。在 CPCUs 之间引入了跳过连接,以总结前一层 CPCUs 的分割模式,该模式用于生成当前 CPCUs 的分割模式。我们在牙齿点云补全数据集和 PCN 数据集上进行了大量实验。实验结果表明,我们的 TUCNet 不仅在牙齿数据集上达到了最新的性能,而且在 PCN 数据集上也取得了优异的性能。