Suppr超能文献

基于注意力机制的端到端点云补全网络。

End-to-End Point Cloud Completion Network with Attention Mechanism.

机构信息

School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China.

College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Sensors (Basel). 2022 Aug 26;22(17):6439. doi: 10.3390/s22176439.

Abstract

We propose a conceptually simple, general framework and end-to-end approach to point cloud completion, entitled PCA-Net. This approach differs from the existing methods in that it does not require a "simple" network, such as multilayer perceptrons (MLPs), to generate a coarse point cloud and then a "complex" network, such as auto-encoders or transformers, to enhance local details. It can directly learn the mapping between missing and complete points, ensuring that the structure of the input missing point cloud remains unchanged while accurately predicting the complete points. This approach follows the minimalist design of U-Net. In the encoder, we encode the point clouds into point cloud blocks by iterative farthest point sampling (IFPS) and k-nearest neighbors and then extract the depth interaction features between the missing point cloud blocks by the attention mechanism. In the decoder, we introduce a new trilinear interpolation method to recover point cloud details, with the help of the coordinate space and feature space of low-resolution point clouds, and missing point cloud information. This paper also proposes a method to generate multi-view missing point cloud data using a 3D point cloud hidden point removal algorithm, so that each 3D point cloud model generates a missing point cloud through eight uniformly distributed camera poses. Experiments validate the effectiveness and superiority of PCA-Net in several challenging point cloud completion tasks, and PCA-Net also shows great versatility and robustness in real-world missing point cloud completion.

摘要

我们提出了一个概念简单、端到端的点云补全框架和方法,称为 PCA-Net。与现有方法不同,它不需要一个“简单”的网络(如多层感知机 (MLP))来生成粗糙的点云,然后再使用“复杂”的网络(如自动编码器或转换器)来增强局部细节。它可以直接学习缺失点和完整点之间的映射,确保输入缺失点云的结构保持不变,同时准确预测完整点。该方法遵循 U-Net 的极简主义设计。在编码器中,我们通过迭代最远点采样 (IFPS) 和 k-最近邻对点云进行编码,然后通过注意力机制提取缺失点云块之间的深度交互特征。在解码器中,我们引入了一种新的三线性插值方法来恢复点云细节,借助低分辨率点云的坐标空间和特征空间以及缺失点云信息。本文还提出了一种使用 3D 点云隐藏点去除算法生成多视点缺失点云数据的方法,以便每个 3D 点云模型通过八个均匀分布的相机姿态生成一个缺失点云。实验验证了 PCA-Net 在几个具有挑战性的点云补全任务中的有效性和优越性,PCA-Net 在真实的缺失点云补全中也表现出很强的通用性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce90/9460578/9c338244ca01/sensors-22-06439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验