Suppr超能文献

MRI 放射组学在乳腺癌术前评估血管淋巴管侵犯中的应用:一项荟萃分析。

MRI radiomics for the preoperative evaluation of lymphovascular invasion in breast cancer: A meta-analysis.

机构信息

Lanzhou University, Lanzhou 730000, China; Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou 730000, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou 730000, China.

No.2 Hospital of Baiyin City, Baiyin 730900, China.

出版信息

Eur J Radiol. 2023 Nov;168:111127. doi: 10.1016/j.ejrad.2023.111127. Epub 2023 Sep 29.

Abstract

PURPOSE

To evaluate the ability of preoperative MRI-based radiomic features in predicting lymphovascular invasion (LVI) in patients with breast cancer.

METHODS

PubMed, Embase, Web of Science, Cochrane Library databases, and four Chinese databases were searched to identify relevant studies published up until June 15, 2023. Two reviewers screened all papers independently for eligibility. We included diagnostic accuracy studies that used radiomics-MRI for LVI in patients with breast cancer, using histopathology as the reference standard. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality Score. Overall diagnostic odds ratio (DOR), sensitivity, specificity and area under the curve (AUC) were calculated to assess the prediction efficacy of MRI-based radiomic features in patients with breast cancer. Spearman's correlation coefficient was calculated and subgroup analysis performed to investigate causes of heterogeneity.

RESULTS

Eight studies comprising 1685 female patients were included. The pooled DOR, sensitivity, specificity, and AUC of radiomics in detecting LVI were 23 [confidence interval (CI) 16,32], 0.89(0.86,0.92), 0.82 (0.78,0.86), and 0.83(0.78,0.87), respectively. The meta-analysis showed significant heterogeneity among the included studies. No threshold effect was detected. Subgroup analysis showed that more than 200 participants, radiomics with clinical factors, semiautomatic segmentation method and peritumoral or intra- and peritumoral model [DOR: 28(18,42), 26(19,37), 34(16,70), 40(10,156), respectively] could improve diagnostic performance compared with less than 200 participants, only radiomics, manual segmentation method, and tumor model [DOR: 16(7,37), 21(6,73), 20(12,32), 21(13,32), respectively], but 3.0 T MR and multiple sequences approach [DOR: 27(15,49),17(8,35)] couldn't improve diagnostic performance compared with 1.5 T and DCE radiomic features [DOR:27(7,99),25(17,37)].

CONCLUSION

Our meta-analysis showed that preoperative MRI-based radiomic features performs well in predicting LVI in patients with breast cancer. This noninvasive and convenient tool may be used to facilitate preoperative identification of LVI in breast cancer.

摘要

目的

评估术前 MRI 放射组学特征预测乳腺癌患者淋巴血管侵犯(LVI)的能力。

方法

检索 PubMed、Embase、Web of Science、Cochrane 图书馆数据库和四个中文数据库,以确定截至 2023 年 6 月 15 日发表的相关研究。两名审查员独立筛选所有符合条件的论文。我们纳入了使用放射组学-MRI 预测乳腺癌患者 LVI 的诊断准确性研究,以组织病理学为参考标准。使用诊断准确性研究质量评估 2 版(QUADAS-2)和放射组学质量评分评估质量。计算总体诊断优势比(DOR)、敏感度、特异度和曲线下面积(AUC),以评估 MRI 放射组学特征在预测乳腺癌患者 LVI 中的预测效果。计算 Spearman 相关系数,并进行亚组分析以探讨异质性的原因。

结果

纳入了 8 项研究,共包括 1685 名女性患者。放射组学检测 LVI 的汇总 DOR、敏感度、特异度和 AUC 分别为 23(16,32)、0.89(0.86,0.92)、0.82(0.78,0.86)和 0.83(0.78,0.87)。纳入研究的荟萃分析显示存在显著的异质性。未检测到阈值效应。亚组分析表明,参与者超过 200 人、放射组学结合临床因素、半自动分割方法以及肿瘤周围或肿瘤内和肿瘤周围模型[DOR:28(18,42)、26(19,37)、34(16,70)、40(10,156)]可以提高诊断性能,而参与者少于 200 人、仅放射组学、手动分割方法和肿瘤模型[DOR:16(7,37)、21(6,73)、20(12,32)、21(13,32)]则无法提高诊断性能,但 3.0 T MR 和多序列方法[DOR:27(15,49)、17(8,35)]与 1.5 T 和 DCE 放射组学特征[DOR:27(7,99)、25(17,37)]相比,无法提高诊断性能。

结论

我们的荟萃分析表明,术前 MRI 放射组学特征在预测乳腺癌患者 LVI 方面表现良好。这种非侵入性和方便的工具可能有助于术前识别乳腺癌中的 LVI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验