Suppr超能文献

基于多序列磁共振成像最佳感兴趣区的机器学习预测浸润性乳腺癌的淋巴管侵犯

Machine learning based on optimal VOI of multi-sequence MR images to predict lymphovascular invasion in invasive breast cancer.

作者信息

Jiang Dengke, Qian Qiuqin, Yang Xiuqi, Zeng Ying, Liu Haibo

机构信息

Department of Radiology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410005, China.

Department of Radiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China.

出版信息

Heliyon. 2024 Apr 6;10(7):e29267. doi: 10.1016/j.heliyon.2024.e29267. eCollection 2024 Apr 15.

Abstract

OBJECTIVES

Lymphovascular invasion serves as a crucial prognostic indicator in invasive breast cancer, influencing treatment decisions. We aimed to develop a machine learning model utilizing optimal volumes of interest extracted from multisequence magnetic resonance images to predict lymphovascular invasion in patients with invasive breast cancer.

MATERIALS AND METHODS

This study comprised 191 patients postoperatively diagnosed with invasive breast cancer through multi-sequence magnetic resonance imaging. Independent predictors were identified through univariate and multivariate logistic regression analyses, culminating in the construction of a clinical model. Radiomic features were extracted from multi-sequence magnetic resonance imaging images across various volume of interest scales (-2 mm, entire, +2 mm, +4 mm, and +6 mm). Subsequently, various radiomic models were developed using machine learning model algorithms, including logistic regression, support vector machine, k-nearest neighbor, gradient boosting machine, classification and regression tree, and random forest. A hybrid model was then formulated, amalgamating optimal radiomic and clinical models.

RESULTS

The area under the curve of the clinical model was 0.757. Among the radiomic models, the most efficient diagnosis was achieved by the k-nearest neighbor-based radiomics-volume of interest (+2 mm), resulting in an area under the curve of 0.780. The hybrid model, integrating the k-nearest neighbor-based radiomics-volume of interest (+2 mm), and the clinical model surpassed the individual clinical and radiomics models, exhibiting a superior area under the curve of 0.864.

CONCLUSION

Utilizing a hybrid approach integrating clinical data and multi-sequence magnetic resonance imaging-derived radiomics models based on the multiscale tumor region volume of interest (+2 mm) proved effective in determining lymphovascular invasion status in patients with invasive breast cancer. This innovative methodology may offer valuable insights for treatment planning and disease management.

摘要

目的

淋巴管侵犯是浸润性乳腺癌的关键预后指标,影响治疗决策。我们旨在开发一种机器学习模型,利用从多序列磁共振图像中提取的最佳感兴趣体积来预测浸润性乳腺癌患者的淋巴管侵犯情况。

材料与方法

本研究纳入了191例经多序列磁共振成像术后诊断为浸润性乳腺癌的患者。通过单因素和多因素逻辑回归分析确定独立预测因素,最终构建临床模型。从不同感兴趣体积尺度(-2mm、全层、+2mm、+4mm和+6mm)的多序列磁共振成像图像中提取放射组学特征。随后,使用包括逻辑回归、支持向量机、k近邻、梯度提升机、分类与回归树以及随机森林在内的机器学习模型算法开发各种放射组学模型。然后构建一个混合模型,将最佳放射组学模型和临床模型合并。

结果

临床模型的曲线下面积为0.757。在放射组学模型中,基于k近邻的放射组学-感兴趣体积(+2mm)实现了最有效的诊断,曲线下面积为0.780。整合基于k近邻的放射组学-感兴趣体积(+2mm)的混合模型和临床模型优于单独的临床模型和放射组学模型,曲线下面积为0.864,表现更优。

结论

利用基于多尺度肿瘤区域感兴趣体积(+2mm)的临床数据和多序列磁共振成像衍生的放射组学模型的混合方法,在确定浸润性乳腺癌患者的淋巴管侵犯状态方面被证明是有效的。这种创新方法可能为治疗规划和疾病管理提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0288/11016709/8c89d7e7b7ee/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验