文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于磁共振成像的脑转移瘤瘤周和瘤内影像组学用于预测转移性非小细胞肺癌对表皮生长因子受体酪氨酸激酶抑制剂的反应

Peritumoral and intratumoral magnetic resonance imaging-based radiomics of brain metastases for predicting the response to EGFR-tyrosine kinase inhibitors in metastatic non-small cell lung cancer.

作者信息

Li Ye, Lv Xinna, Xu Xiaoyue, Zheng Ziwei, Lu Yiyan, Yao Zhijie, Hou Dailun

机构信息

Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.

Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, China.

出版信息

Quant Imaging Med Surg. 2025 Aug 1;15(8):6751-6762. doi: 10.21037/qims-2024-2671. Epub 2025 Jul 30.


DOI:10.21037/qims-2024-2671
PMID:40785874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12332723/
Abstract

BACKGROUND: The early prediction of treatment response for EGFR-tyrosine kinase inhibitors (EGFR-TKIs) is critical to guiding therapy in patients with metastatic non-small cell lung cancer (NSCLC). This study aimed to develop a magnetic resonance imaging (MRI)-based radiomics model based on intratumoral and peritumoral regions to assess the response of patients with metastatic NSCLC to EGFR-TKIs. METHODS: We retrospectively recruited 418 and 160 patients with brain metastases (BMs) from -mutant NSCLC who received EGFR-TKI therapy from hospital 1 and hospital 2, respectively. The intratumoral region of interest (ROI_I) was manually segmented for contrast-enhanced T1-weighted (T1-CE) imaging. Five peritumoral ROIs (ROI_P) at 2-, 4-, 6-, 8-, and 10-mm expansions along ROI_I were defined, and combined ROIs (ROI_I and ROI_P) were automatically generated. The least absolute shrinkage and selection operator (LASSO) was used to select the most predictive features, which was followed by the construction of radiomics models (the ROI_I model, ROI_P model, and the combined model). The area under the curve (AUC) and Shapley method were used to validate the performance of the models and explain the best models. RESULTS: The combined intratumoral and peritumoral 6-mm regions achieved the best performance, with AUCs of 0.913 and 0.826 in the training and test cohort. The ROI_I model also demonstrated a degree of classification power in both the training and test cohort, with AUCs of 0.868 and 0.762, respectively. CONCLUSIONS: As compared to models consisting of intratumoral or peritumoral radiomics features alone, the model combining intratumoral and peritumoral radiomics features achieved better performance in predicting therapeutic response to EGFR-TKIs. The optimal combined region model with 6-mm peritumoral expansion along the tumor may benefit the clinical treatment of NSCLC.

摘要

背景:表皮生长因子受体-酪氨酸激酶抑制剂(EGFR-TKIs)治疗反应的早期预测对于指导转移性非小细胞肺癌(NSCLC)患者的治疗至关重要。本研究旨在基于肿瘤内和肿瘤周围区域开发一种基于磁共振成像(MRI)的放射组学模型,以评估转移性NSCLC患者对EGFR-TKIs的反应。 方法:我们分别从医院1和医院2回顾性招募了418例和160例来自EGFR突变型NSCLC且接受EGFR-TKI治疗的脑转移(BM)患者。在对比增强T1加权(T1-CE)成像上手动分割肿瘤内感兴趣区域(ROI_I)。沿着ROI_I定义了5个在2、4、6、8和10毫米扩展的肿瘤周围ROI(ROI_P),并自动生成组合ROI(ROI_I和ROI_P)。使用最小绝对收缩和选择算子(LASSO)选择最具预测性的特征,随后构建放射组学模型(ROI_I模型、ROI_P模型和组合模型)。使用曲线下面积(AUC)和Shapley方法验证模型性能并解释最佳模型。 结果:肿瘤内和肿瘤周围6毫米区域的组合表现最佳,在训练和测试队列中的AUC分别为0.913和0.826。ROI_I模型在训练和测试队列中也表现出一定程度的分类能力,AUC分别为0.868和0.762。 结论:与仅由肿瘤内或肿瘤周围放射组学特征组成的模型相比,结合肿瘤内和肿瘤周围放射组学特征的模型在预测EGFR-TKIs治疗反应方面表现更好。沿肿瘤周围扩展6毫米的最佳组合区域模型可能有益于NSCLC的临床治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/cf5839f61bce/qims-15-08-6751-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/7de0c00793d8/qims-15-08-6751-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/7ac43c2cacfd/qims-15-08-6751-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/4d4dc6b4833f/qims-15-08-6751-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/6897a54e46df/qims-15-08-6751-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/cf5839f61bce/qims-15-08-6751-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/7de0c00793d8/qims-15-08-6751-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/7ac43c2cacfd/qims-15-08-6751-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/4d4dc6b4833f/qims-15-08-6751-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/6897a54e46df/qims-15-08-6751-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5a/12332723/cf5839f61bce/qims-15-08-6751-f5.jpg

相似文献

[1]
Peritumoral and intratumoral magnetic resonance imaging-based radiomics of brain metastases for predicting the response to EGFR-tyrosine kinase inhibitors in metastatic non-small cell lung cancer.

Quant Imaging Med Surg. 2025-8-1

[2]
Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: a multi-center study.

Cancer Imaging. 2025-7-7

[3]
An Integrative Clinical and Intra- and Peritumoral MRI Radiomics Nomogram for the Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer.

Acad Radiol. 2025-3-4

[4]
[Predictive value of CT-based tumor and peritumoral radiomics for WHO/ISUP grading of non-metastatic clear cell renal cell carcinoma].

Zhonghua Yi Xue Za Zhi. 2025-7-15

[5]
Intratumoral and peritumoral radiomics based on 2D ultrasound imaging in breast cancer was used to determine the optimal peritumoral range for predicting KI-67 expression.

J Ultrasound. 2025-7-10

[6]
The value of multiparametric MRI-based combined intratumoral and peritumoral radiomics in differentiating luminal and non-luminal molecular subtypes of breast cancer: a multicenter study.

Gland Surg. 2025-7-31

[7]
Intra- and peritumoral radiomics nomogram based on DCE-MRI for the early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer.

Front Oncol. 2025-6-4

[8]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

[9]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

[10]
Predicting pathological staging of non-small cell lung cancer using a multi-task radiomics model integrating intratumoral and peritumoral features.

Oncol Lett. 2025-7-7

本文引用的文献

[1]
Intratumoral and peritumoral radiomics of MRIs predicts pathologic complete response to neoadjuvant chemoimmunotherapy in patients with head and neck squamous cell carcinoma.

J Immunother Cancer. 2024-11-5

[2]
Tertiary lymphoid structures in anticancer immunity.

Nat Rev Cancer. 2024-9

[3]
A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy.

Cancer Imaging. 2024-7-30

[4]
Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape.

Adv Sci (Weinh). 2024-7

[5]
MRI and F-FET PET for Multimodal Treatment Monitoring in Patients with Brain Metastases: A Cost-Effectiveness Analysis.

J Nucl Med. 2024-6-3

[6]
Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data.

Acad Radiol. 2024-8

[7]
Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes.

Neuro Oncol. 2024-6-3

[8]
A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer.

Eur Radiol Exp. 2024-1-2

[9]
Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma.

BMC Cancer. 2023-10-24

[10]
MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer.

Acad Radiol. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索