Suppr超能文献

受味觉启发的机器学习驱动的用于味觉传感的双响应水凝胶

Gustation-Inspired Dual-Responsive Hydrogels for Taste Sensing Enabled by Machine Learning.

作者信息

Miao Ziyue, Tan Hongwei, Gustavsson Lotta, Zhou Yang, Xu Quan, Ikkala Olli, Peng Bo

机构信息

Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland.

Department of Materials Science, Fudan University, Shanghai, 200433, China.

出版信息

Small. 2024 Feb;20(7):e2305195. doi: 10.1002/smll.202305195. Epub 2023 Oct 6.

Abstract

Human gustatory system recognizes salty/sour or sweet tastants based on their different ionic or nonionic natures using two different signaling pathways. This suggests that evolution has selected this detection dualism favorably. Analogically, this work constructs herein bioinspired stimulus-responsive hydrogels to recognize model salty/sour or sweet tastes based on two different responses, that is, electrical and volumetric responsivities. Different compositions of zwitter-ionic sulfobetainic N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (DMAPS) and nonionic 2-hydroxyethyl methacrylate (HEMA) are co-polymerized to explore conditions for gelation. The hydrogel responses upon adding model tastant molecules are explored using electrical and visual de-swelling observations. Beyond challenging electrochemical impedance spectroscopy measurements, naive multimeter electrical characterizations are performed, toward facile applicability. Ionic model molecules, for example, sodium chloride and acetic acid, interact electrostatically with DMAPS groups, whereas nonionic molecules, for example, D(-)fructose, interact by hydrogen bonding with HEMA. The model tastants induce complex combinations of electrical and volumetric responses, which are then introduced as inputs for machine learning algorithms. The fidelity of such a trained dual response approach is tested for a more general taste identification. This work envisages that the facile dual electric/volumetric hydrogel responses combined with machine learning proposes a generic bioinspired avenue for future bionic designs of artificial taste recognition, amply needed in applications.

摘要

人类味觉系统利用两种不同的信号传导途径,根据咸味/酸味或甜味剂的不同离子或非离子性质来识别它们。这表明进化有利地选择了这种检测二元性。类似地,本文构建了受生物启发的刺激响应水凝胶,基于两种不同的响应,即电响应和体积响应,来识别模拟的咸味/酸味或甜味。两性离子型磺基甜菜碱N-(3-磺丙基)-N-(甲基丙烯酰氧乙基)-N,N-二甲基铵甜菜碱(DMAPS)和非离子型甲基丙烯酸2-羟乙酯(HEMA)的不同组成进行共聚,以探索凝胶化条件。通过电和视觉上的去溶胀观察,研究了添加模拟味觉分子后水凝胶的响应。除了具有挑战性的电化学阻抗谱测量外,还进行了简单的万用表电学表征,以实现简便的适用性。离子型模型分子,例如氯化钠和乙酸,与DMAPS基团发生静电相互作用,而非离子型分子,例如D(-)果糖,则通过与HEMA形成氢键相互作用。模拟味觉剂会引发电响应和体积响应的复杂组合,然后将其作为机器学习算法的输入。针对更一般的味觉识别测试了这种经过训练的双响应方法的保真度。这项工作设想,简便的双电/体积水凝胶响应与机器学习相结合,为未来人工味觉识别的仿生设计提出了一条通用的受生物启发的途径,这在应用中是非常需要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验