Suppr超能文献

通过目标检测模型对疑似溺水病例复杂背景中的硅藻进行自动检测和识别。

Automatic detection and identification of diatoms in complex background for suspected drowning cases through object detection models.

作者信息

Tournois Laurent, Hatsch Didier, Ludes Bertrand, Delabarde Tania

机构信息

UMR 8045 BABEL, Université Paris Cité, CNRS, 75012, Paris, France.

BioSilicium, Riom, France.

出版信息

Int J Legal Med. 2024 Mar;138(2):659-670. doi: 10.1007/s00414-023-03096-w. Epub 2023 Oct 7.

Abstract

The diagnosis of drowning is one of the most difficult tasks in forensic medicine. The diatom test is a complementary analysis method that may help the forensic pathologist in the diagnosis of drowning and the localization of the drowning site. This test consists in detecting or identifying diatoms, unicellular algae, in tissue and water samples. In order to observe diatoms under light microscopy, those samples may be digested by enzymes such as proteinase K. However, this digestion method may leave high amounts of debris, leading thus to a difficult detection and identification of diatoms. To the best of our knowledge, no model is proved to detect and identify accurately diatom species observed in highly complex backgrounds under light microscopy. Therefore, a novel method of model development for diatom detection and identification in a forensic context, based on sequential transfer learning of object detection models, is proposed in this article. The best resulting models are able to detect and identify up to 50 species of forensically relevant diatoms with an average precision and an average recall ranging from 0.7 to 1 depending on the concerned species. The models were developed by sequential transfer learning and globally outperformed those developed by traditional transfer learning. The best model of diatom species identification is expected to be used in routine at the Medicolegal Institute of Paris.

摘要

溺水诊断是法医学中最困难的任务之一。硅藻检验是一种辅助分析方法,可能有助于法医病理学家诊断溺水情况及确定溺水地点。该检验包括在组织和水样中检测或识别硅藻,即单细胞藻类。为了在光学显微镜下观察硅藻,这些样本可能会用蛋白酶K等酶进行消化。然而,这种消化方法可能会留下大量碎片,从而导致硅藻的检测和识别困难。据我们所知,尚无模型被证明能在光学显微镜下高度复杂的背景中准确检测和识别所观察到的硅藻种类。因此,本文提出了一种基于目标检测模型的顺序迁移学习,用于法医学背景下硅藻检测和识别的模型开发新方法。最终得到的最佳模型能够检测和识别多达50种与法医学相关的硅藻,根据相关种类的不同,平均精度和平均召回率在0.7至1之间。这些模型是通过顺序迁移学习开发的,总体上优于传统迁移学习开发的模型。预计巴黎法医学研究所将在日常工作中使用最佳的硅藻种类识别模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验