Suppr超能文献

结合临床和影像学数据预测急性缺血性脑卒中后功能结局:一种自动化机器学习方法。

Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke: an automated machine learning approach.

机构信息

Department of CGMS Sensor, Sensor R&D Center, i-SENS, Seoul, Republic of Korea.

Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.

出版信息

Sci Rep. 2023 Oct 7;13(1):16926. doi: 10.1038/s41598-023-44201-8.

Abstract

This study aimed to develop and validate an automated machine learning (ML) system that predicts 3-month functional outcomes in acute ischemic stroke (AIS) patients by combining clinical and neuroimaging features. Functional outcomes were categorized as unfavorable (modified Rankin Scale ≥ 3) or not. A clinical model employing optimal clinical features (Model_A), a convolutional neural network model incorporating imaging data (Model_B), and an integrated model combining both imaging and clinical features (Model_C) were developed and tested to predict unfavorable outcomes. The developed models were compared with each other and with traditional risk-scoring models. The dataset comprised 4147 patients from a multicenter stroke registry, with 1268 (30.6%) experiencing unfavorable outcomes. Age, initial NIHSS, and early neurologic deterioration were identified as the most important clinical features. The ML model prediction achieved an area under the curves of 0.757 (95% CI 0.726-0.789) for Model_A, 0.725 (95% CI 0.693-0.755) for Model_B, and 0.786 (95% CI 0.757-0.814) for Model_C in the test set. The integrated models outperformed traditional risk-scoring models by 0.21 (95% CI 0.16-0.25) for HIAT and 0.15 (95% CI 0.11-0.19) for THRIVE. In conclusion, the integrated ML system enhanced stroke outcome prediction by combining imaging data and clinical features, outperforming traditional risk-scoring models.

摘要

本研究旨在开发和验证一种自动化机器学习 (ML) 系统,通过结合临床和神经影像学特征来预测急性缺血性脑卒中 (AIS) 患者的 3 个月功能结局。功能结局分为不良(改良 Rankin 量表≥3)和非不良。采用最佳临床特征(Model_A)、纳入影像数据的卷积神经网络模型(Model_B)和结合影像与临床特征的综合模型(Model_C)分别开发和测试了预测不良结局的临床模型。将开发的模型与彼此以及传统风险评分模型进行了比较。该数据集来自一个多中心脑卒中注册研究,包含 4147 例患者,其中 1268 例(30.6%)发生不良结局。年龄、初始 NIHSS 和早期神经功能恶化被确定为最重要的临床特征。ML 模型预测在测试集中对 Model_A 的曲线下面积为 0.757(95%CI 0.726-0.789),对 Model_B 为 0.725(95%CI 0.693-0.755),对 Model_C 为 0.786(95%CI 0.757-0.814)。综合模型在 HIAT 中比传统风险评分模型高 0.21(95%CI 0.16-0.25),在 THRIVE 中高 0.15(95%CI 0.11-0.19)。综上所述,通过结合影像数据和临床特征,综合 ML 系统增强了脑卒中结局预测,优于传统风险评分模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cfb/10560215/97254eaaeafb/41598_2023_44201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验