Lee Joonwon, Park Kang Min, Park Seongho
Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
Front Neurol. 2023 Sep 7;14:1234046. doi: 10.3389/fneur.2023.1234046. eCollection 2023.
Predicting the prognosis of acute ischemic stroke (AIS) is crucial in a clinical setting for establishing suitable treatment plans. This study aimed to develop and validate a machine learning (ML) model that predicts the functional outcome of AIS patients and provides interpretable insights.
We included AIS patients from a multicenter stroke registry in this prognostic study. ML-based methods were utilized to predict 3-month functional outcomes, which were categorized as either favorable [modified Rankin Scale (mRS) ≤ 2] or unfavorable (mRS ≥ 3). The SHapley Additive exPlanations (SHAP) method was employed to identify significant features and interpret their contributions to the predictions of the model.
The dataset comprised a derivation set of 3,687 patients and two external validation sets totaling 250 and 110 patients each. Among them, the number of unfavorable outcomes was 1,123 (30.4%) in the derivation set, and 93 (37.2%) and 32 (29.1%) in external sets A and B, respectively. Among the ML models used, the eXtreme Gradient Boosting model demonstrated the best performance. It achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.790 (95% CI: 0.775-0.806) on the internal test set and 0.791 (95% CI: 0.733-0.848) and 0.873 (95% CI: 0.798-0.948) on the two external test sets, respectively. The key features for predicting functional outcomes were the initial NIHSS, early neurologic deterioration (END), age, and white blood cell count. The END displayed noticeable interactions with several other features.
ML algorithms demonstrated proficient prediction for the 3-month functional outcome in AIS patients. With the aid of the SHAP method, we can attain an in-depth understanding of how critical features contribute to model predictions and how changes in these features influence such predictions.
在临床环境中预测急性缺血性卒中(AIS)的预后对于制定合适的治疗方案至关重要。本研究旨在开发并验证一种机器学习(ML)模型,该模型可预测AIS患者的功能结局并提供可解释的见解。
在这项预后研究中,我们纳入了来自多中心卒中登记处的AIS患者。基于ML的方法用于预测3个月时的功能结局,结局分为良好(改良Rankin量表[mRS]≤2)或不良(mRS≥3)。采用SHapley加性解释(SHAP)方法来识别重要特征并解释它们对模型预测的贡献。
数据集包括一个由3687例患者组成的推导集以及两个外部验证集,每个验证集分别有250例和110例患者。其中,推导集中不良结局的数量为1123例(30.4%),外部集A和B中分别为93例(37.2%)和32例(29.1%)。在所使用的ML模型中,极端梯度提升模型表现最佳。它在内部测试集上的受试者操作特征曲线下面积(AUC-ROC)为0.790(95%CI:0.775-0.806),在两个外部测试集上分别为0.791(95%CI:0.733-0.848)和0.873(95%CI:0.798-0.948)。预测功能结局的关键特征为初始美国国立卫生研究院卒中量表(NIHSS)评分、早期神经功能恶化(END)、年龄和白细胞计数。END与其他几个特征之间存在显著的相互作用。
ML算法对AIS患者3个月时的功能结局表现出良好的预测能力。借助SHAP方法,我们能够深入了解关键特征如何对模型预测产生影响以及这些特征的变化如何影响此类预测。