From the Departments of Radiology (Y.L., J.O., B.J., S.O., Y. Yang, M.E.M., J.J.H., G.Z.) and Neurology (M.L., G.A.), Stanford University School of Medicine, 1201 Welch Rd, Stanford, CA 94305-5488; Department of Radiology, University of California-San Francisco, San Francisco, Calif (Y. Yu); Department of Electrical Engineering (J.O.) and Department of Environmental Health and Safety (J.W.), Stanford University, Stanford, Calif; Henry M. Gunn Senior High School, Palo Alto, Calif (S.L.L.); National Heart and Lung Institute, Imperial College London, London, UK (G.Y.); Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland (P.M.); Department of Neurology, University of California Los Angeles, Los Angeles, Calif (D.S.L.); and Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, Tex (M.W.).
Radiology. 2024 Oct;313(1):e240137. doi: 10.1148/radiol.240137.
Background Clinical outcome prediction based on acute-phase ischemic stroke data is valuable for planning health care resources, designing clinical trials, and setting patient expectations. Existing methods require individualized features and often involve manually engineered, time-consuming postprocessing activities. Purpose To predict the 90-day modified Rankin Scale (mRS) score with a deep learning (DL) model fusing noncontrast-enhanced CT (NCCT) and clinical information from the acute phase of stroke. Materials and Methods This retrospective study included data from six patient datasets from four multicenter trials and two registries. The DL-based imaging and clinical model was trained by using NCCT data obtained 1-7 days after baseline imaging and clinical data (age; sex; baseline and 24-hour National Institutes of Health Stroke Scale scores; and history of hypertension, diabetes, and atrial fibrillation). This model was compared with models based on either NCCT or clinical information alone. Model-specific mRS score prediction accuracy, mRS score accuracy within 1 point of the actual mRS score, mean absolute error (MAE), and performance in identifying unfavorable outcomes (mRS score, >2) were evaluated. Results A total of 1335 patients (median age, 71 years; IQR, 60-80 years; 674 female patients) were included for model development and testing through sixfold cross validation, with distributions of 979, 133, and 223 patients across training, validation, and test sets in each of the six cross-validation folds, respectively. The fused model achieved an MAE of 0.94 (95% CI: 0.89, 0.98) for predicting the specific mRS score, outperforming the imaging-only (MAE, 1.10; 95% CI: 1.05, 1.16; < .001) and the clinical information-only (MAE, 1.00; 95% CI: 0.94, 1.05; = .04) models. The fused model achieved an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.92) for predicting unfavorable outcomes, outperforming the clinical information-only model (AUC, 0.88; 95% CI: 0.87, 0.90; < .001) and the imaging-only model (AUC, 0.85; 95% CI: 0.84, 0.87; < .001). Conclusion A fused DL-based NCCT and clinical model outperformed an imaging-only model and a clinical-information-only model in predicting 90-day mRS scores. © RSNA, 2024 See also the editorial by Lee in this issue.
背景 基于急性缺血性脑卒中数据的临床预后预测对于规划医疗资源、设计临床试验和设定患者预期非常有价值。现有的方法需要个体化的特征,并且通常涉及到手动设计、耗时的后处理活动。
目的 利用深度学习(DL)模型融合非增强 CT(NCCT)和脑卒中急性期的临床信息来预测 90 天改良 Rankin 量表(mRS)评分。
材料与方法 本回顾性研究纳入了来自四项多中心试验和两项登记处的 6 个患者数据集的数据。该基于 DL 的成像和临床模型通过使用基线成像后 1-7 天获得的 NCCT 数据和临床数据(年龄;性别;基线和 24 小时国立卫生研究院卒中量表评分;高血压、糖尿病和心房颤动病史)进行训练。将该模型与仅基于 NCCT 或临床信息的模型进行比较。评估了模型特异性 mRS 评分预测准确性、实际 mRS 评分相差 1 分的 mRS 评分准确性、平均绝对误差(MAE)和识别不良结局(mRS 评分>2)的性能。
结果 共纳入 1335 例患者(中位年龄 71 岁;IQR,60-80 岁;674 例女性),通过六重交叉验证进行模型开发和测试,在每一个六重交叉验证折叠中,训练集、验证集和测试集分别有 979、133 和 223 例患者。融合模型在预测特定 mRS 评分方面的 MAE 为 0.94(95%CI:0.89,0.98),优于仅基于成像的模型(MAE,1.10;95%CI:1.05,1.16;<.001)和仅基于临床信息的模型(MAE,1.00;95%CI:0.94,1.05;=0.04)。融合模型在预测不良结局方面的受试者工作特征曲线下面积(AUC)为 0.91(95%CI:0.89,0.92),优于仅基于临床信息的模型(AUC,0.88;95%CI:0.87,0.90;<.001)和仅基于成像的模型(AUC,0.85;95%CI:0.84,0.87;<.001)。
结论 基于深度学习的融合 NCCT 和临床模型在预测 90 天 mRS 评分方面优于仅基于成像的模型和仅基于临床信息的模型。