Suppr超能文献

利用高通量植物图像数据进行快速在线植物叶面积变化检测

Rapid online plant leaf area change detection with high-throughput plant image data.

作者信息

Zhan Yinglun, Zhang Ruizhi, Zhou Yuzhen, Stoerger Vincent, Hiller Jeremy, Awada Tala, Ge Yufeng

机构信息

Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA.

Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, USA.

出版信息

J Appl Stat. 2022 Dec 5;50(14):2984-2998. doi: 10.1080/02664763.2022.2150753. eCollection 2023.

Abstract

High-throughput plant phenotyping (HTPP) has become an emerging technique to study plant traits due to its fast, labor-saving, accurate and non-destructive nature. It has wide applications in plant breeding and crop management. However, the resulting massive image data has raised a challenge associated with efficient plant traits prediction and anomaly detection. In this paper, we propose a two-step image-based online detection framework for monitoring and quick change detection of the individual plant leaf area via real-time imaging data. Our proposed method is able to achieve a smaller detection delay compared with some baseline methods under some predefined false alarm rate constraint. Moreover, it does not need to store all past image information and can be implemented in real time. The efficiency of the proposed framework is validated by a real data analysis.

摘要

高通量植物表型分析(HTPP)因其快速、省力、准确和非破坏性的特点,已成为研究植物性状的一项新兴技术。它在植物育种和作物管理中有着广泛的应用。然而,由此产生的海量图像数据给高效的植物性状预测和异常检测带来了挑战。在本文中,我们提出了一个基于图像的两步在线检测框架,用于通过实时成像数据监测和快速检测单株植物的叶面积变化。在一些预定义的误报率约束下,与一些基线方法相比,我们提出的方法能够实现更小的检测延迟。此外,它不需要存储所有过去的图像信息,并且可以实时实现。通过实际数据分析验证了所提框架的有效性。

相似文献

1
Rapid online plant leaf area change detection with high-throughput plant image data.
J Appl Stat. 2022 Dec 5;50(14):2984-2998. doi: 10.1080/02664763.2022.2150753. eCollection 2023.
3
Image-Based High-Throughput Phenotyping in Horticultural Crops.
Plants (Basel). 2023 May 22;12(10):2061. doi: 10.3390/plants12102061.
5
Pitfalls and potential of high-throughput plant phenotyping platforms.
Front Plant Sci. 2023 Aug 23;14:1233794. doi: 10.3389/fpls.2023.1233794. eCollection 2023.
6
Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
Sci China Life Sci. 2018 Mar;61(3):328-339. doi: 10.1007/s11427-017-9056-0. Epub 2017 Dec 6.
7
A data workflow to support plant breeding decisions from a terrestrial field-based high-throughput plant phenotyping system.
Plant Methods. 2020 Jul 16;16:97. doi: 10.1186/s13007-020-00639-9. eCollection 2020.
10
Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning.
Plant Methods. 2022 Mar 15;18(1):30. doi: 10.1186/s13007-022-00868-0.

引用本文的文献

1
Editorial to the special issue: modern streaming data analytics.
J Appl Stat. 2023 Oct 5;50(14):2857-2861. doi: 10.1080/02664763.2023.2247646. eCollection 2023.

本文引用的文献

1
A High-Throughput Phenotyping Pipeline for Image Processing and Functional Growth Curve Analysis.
Plant Phenomics. 2020 Jul 14;2020:7481687. doi: 10.34133/2020/7481687. eCollection 2020.
3
Leveraging Image Analysis for High-Throughput Plant Phenotyping.
Front Plant Sci. 2019 Apr 24;10:508. doi: 10.3389/fpls.2019.00508. eCollection 2019.
5
High Throughput Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging.
Front Plant Sci. 2017 Aug 3;8:1348. doi: 10.3389/fpls.2017.01348. eCollection 2017.
6
Machine Learning for High-Throughput Stress Phenotyping in Plants.
Trends Plant Sci. 2016 Feb;21(2):110-124. doi: 10.1016/j.tplants.2015.10.015. Epub 2015 Dec 1.
7
Lights, camera, action: high-throughput plant phenotyping is ready for a close-up.
Curr Opin Plant Biol. 2015 Apr;24:93-9. doi: 10.1016/j.pbi.2015.02.006. Epub 2015 Feb 27.
8
Yield Trends Are Insufficient to Double Global Crop Production by 2050.
PLoS One. 2013 Jun 19;8(6):e66428. doi: 10.1371/journal.pone.0066428. Print 2013.
9
Phenomics--technologies to relieve the phenotyping bottleneck.
Trends Plant Sci. 2011 Dec;16(12):635-44. doi: 10.1016/j.tplants.2011.09.005. Epub 2011 Nov 9.
10
Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution.
Neuroimage. 2003 Oct;20(2):643-56. doi: 10.1016/S1053-8119(03)00406-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验