Bosc Marcel, Heitz Fabrice, Armspach Jean Paul, Namer Izzie, Gounot Daniel, Rumbach Lucien
Laboratoire des Sciences de l'Image de l'Informatique et de la Télédetection (LSIIT) UMR-7005 CNRS, 67400, Illkirch, France.
Neuroimage. 2003 Oct;20(2):643-56. doi: 10.1016/S1053-8119(03)00406-3.
The automatic analysis of subtle changes between MRI scans is an important tool for assessing disease evolution over time. Manual labeling of evolutions in 3D data sets is tedious and error prone. Automatic change detection, however, remains a challenging image processing problem. A variety of MRI artifacts introduce a wide range of unrepresentative changes between images, making standard change detection methods unreliable. In this study we describe an automatic image processing system that addresses these issues. Registration errors and undesired anatomical deformations are compensated using a versatile multiresolution deformable image matching method that preserves significant changes at a given scale. A nonlinear intensity normalization method is associated with statistical hypothesis test methods to provide reliable change detection. Multimodal data is optionally exploited to reduce the false detection rate. The performance of the system was evaluated on a large database of 3D multimodal, MR images of patients suffering from relapsing remitting multiple sclerosis (MS). The method was assessed using receiver operating characteristics (ROC) analysis, and validated in a protocol involving two neurologists. The automatic system outperforms the human expert, detecting many lesion evolutions that are missed by the expert, including small, subtle changes.
磁共振成像(MRI)扫描之间细微变化的自动分析是评估疾病随时间演变的重要工具。对三维数据集的演变进行手动标记既繁琐又容易出错。然而,自动变化检测仍然是一个具有挑战性的图像处理问题。各种MRI伪影会在图像之间引入大量不具代表性的变化,使得标准的变化检测方法不可靠。在本研究中,我们描述了一种解决这些问题的自动图像处理系统。使用一种通用的多分辨率可变形图像匹配方法来补偿配准误差和不期望的解剖变形,该方法在给定尺度上保留显著变化。一种非线性强度归一化方法与统计假设检验方法相结合,以提供可靠的变化检测。还可选择利用多模态数据来降低误检率。该系统的性能在一个由复发缓解型多发性硬化症(MS)患者的三维多模态MR图像组成的大型数据库上进行了评估。使用受试者工作特征(ROC)分析对该方法进行了评估,并在一个涉及两名神经科医生的方案中进行了验证。该自动系统优于人类专家,检测出了许多专家遗漏的病变演变,包括微小、细微的变化。