Suppr超能文献

基于任务的数字化乳腺X线摄影微钙化检测评估,采用深度学习去噪算法及物理体模研究。

Task-based assessment of digital mammography microcalcification detection with deep learning denoising algorithmss using and physical phantom studies.

作者信息

Makeev Andrey, Glick Stephen J

机构信息

Food and Drug Administration, Silver Spring, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2023 Sep;10(5):053502. doi: 10.1117/1.JMI.10.5.053502. Epub 2023 Oct 6.

Abstract

PURPOSE

Recent research suggests that image quality degradation with reduced radiation exposure in mammography can be mitigated by postprocessing mammograms with denoising algorithms based on convolutional neural networks. Breast microcalcifications, along with extended soft-tissue lesions, are the primary breast cancer biomarkers in a clinical x-ray examination, with the former being more sensitive to quantum noise. We test one such publicly available denoising method to observe if an improvement in detection of small microcalcifications can be achieved when deep learning-based denoising is applied to half-dose phantom scans.

APPROACH

An existing denoiser model (that was previously trained on clinical data) was applied to mammograms of an anthropomorphic physical phantom with hydroxyapatite microcalcifications. In addition, another model trained and tested using all synthetic (Monte Carlo) data was applied to a similar digital compressed breast phantom. Human reader studies were conducted to assess and compare image quality in a set of binary signal detection 4-AFC experiments, with proportion of correct responses used as a performance metric.

RESULTS

In both physical phantom/clinical system and simulation studies, we saw no apparent improvement in small microcalcification signal detection in denoised half-dose mammograms. However, in a Monte Carlo study, we observed a noticeable jump in 4-AFC scores, when readers analyzed denoised half-dose images processed by the neural network trained on a dataset composed of 50% signal-present (SP) and 50% signal-absent regions of interest (ROIs).

CONCLUSIONS

Our findings conjecture that deep-learning denoising algorithms may benefit from enriching training datasets with SP ROIs, at least in cases with clusters of 5 to 10 microcalcifications, each of size .

摘要

目的

近期研究表明,在乳腺钼靶检查中,通过基于卷积神经网络的去噪算法对乳腺钼靶图像进行后处理,可以减轻因辐射剂量降低导致的图像质量下降。乳腺微钙化以及扩展的软组织病变是临床X线检查中主要的乳腺癌生物标志物,前者对量子噪声更为敏感。我们测试了一种公开可用的去噪方法,以观察当基于深度学习的去噪应用于半剂量体模扫描时,是否能提高对微小钙化的检测能力。

方法

将一个现有的去噪模型(该模型先前在临床数据上进行了训练)应用于带有羟基磷灰石微钙化的拟人化物理体模的乳腺钼靶图像。此外,将另一个使用所有合成(蒙特卡洛)数据进行训练和测试的模型应用于类似的数字压缩乳腺体模。进行了人类读者研究,以在一组二进制信号检测4-AFC实验中评估和比较图像质量,将正确反应的比例用作性能指标。

结果

在物理体模/临床系统和模拟研究中,我们发现在去噪后的半剂量乳腺钼靶图像中,微小钙化信号检测没有明显改善。然而,在一项蒙特卡洛研究中,当读者分析由在由50%存在信号(SP)和50%不存在信号的感兴趣区域(ROI)组成的数据集上训练的神经网络处理的去噪半剂量图像时,我们观察到4-AFC分数有明显跃升。

结论

我们的研究结果推测,深度学习去噪算法可能会从用SP ROI丰富训练数据集的过程中受益,至少在存在5到10个微钙化簇、每个微钙化簇大小为 的情况下是如此。

相似文献

本文引用的文献

10
Epidemiology of ductal carcinoma in situ.导管原位癌的流行病学
J Natl Cancer Inst Monogr. 2010;2010(41):139-41. doi: 10.1093/jncimonographs/lgq027.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验