Suppr超能文献

基于对抗训练的深度卷积神经网络用于数字乳腺断层合成图像去噪。

Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images.

出版信息

IEEE Trans Med Imaging. 2021 Jul;40(7):1805-1816. doi: 10.1109/TMI.2021.3066896. Epub 2021 Jun 30.

Abstract

Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging modality that can reduce false negatives and false positives in mass lesion detection caused by overlapping breast tissue in conventional two-dimensional (2D) mammography. The patient dose of a DBT scan is similar to that of a single 2D mammogram, while acquisition of each projection view adds detector readout noise. The noise is propagated to the reconstructed DBT volume, possibly obscuring subtle signs of breast cancer such as microcalcifications (MCs). This study developed a deep convolutional neural network (DCNN) framework for denoising DBT images with a focus on improving the conspicuity of MCs as well as preserving the ill-defined margins of spiculated masses and normal tissue textures. We trained the DCNN using a weighted combination of mean squared error (MSE) loss and adversarial loss. We configured a dedicated x-ray imaging simulator in combination with digital breast phantoms to generate realistic in silico DBT data for training. We compared the DCNN training between using digital phantoms and using real physical phantoms. The proposed denoising method improved the contrast-to-noise ratio (CNR) and detectability index (d') of the simulated MCs in the validation phantom DBTs. These performance measures improved with increasing training target dose and training sample size. Promising denoising results were observed on the transferability of the digital-phantom-trained denoiser to DBT reconstructed with different techniques and on a small independent test set of human subject DBT images.

摘要

数字乳腺断层合成(DBT)是一种准三维成像方式,可减少常规二维(2D)乳腺摄影中因乳房组织重叠而导致的肿块病变检测中的假阴性和假阳性。DBT 扫描的患者剂量与单次 2D 乳房 X 光检查相似,而每次投影视图的采集都会增加探测器读出噪声。噪声会传播到重建的 DBT 体积中,可能会掩盖乳腺癌的细微迹象,如微钙化(MCs)。本研究开发了一种用于 DBT 图像去噪的深度卷积神经网络(DCNN)框架,重点是提高 MC 的显著性,同时保留分叶状肿块和正常组织纹理的不明确边界。我们使用均方误差(MSE)损失和对抗性损失的加权组合来训练 DCNN。我们结合数字乳腺体模配置了专用的 X 射线成像模拟器,以生成用于训练的逼真的虚拟 DBT 数据。我们比较了使用数字体模和真实物理体模进行 DCNN 训练。所提出的去噪方法提高了验证体模 DBT 中模拟 MC 的对比噪声比(CNR)和可检测性指数(d')。这些性能指标随着训练目标剂量和训练样本量的增加而提高。在将数字体模训练的去噪器转移到不同技术重建的 DBT 以及小型独立的人体 DBT 图像测试集上时,观察到了有希望的去噪结果。

相似文献

引用本文的文献

2

本文引用的文献

5
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
10
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.生成对抗网络在低剂量 CT 中的噪声降低。
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验