Ghanem Ramage M, Kospa Doaa A, Ahmed Awad I, Ibrahim Amr Awad, Gebreil Ahmed
Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
Nile Higher Institutes of Engineering and Technology El-Mansoura Egypt.
RSC Adv. 2023 Oct 5;13(42):29252-29269. doi: 10.1039/d3ra05326a. eCollection 2023 Oct 4.
Devices for electrochemical energy storage with exceptional capacitance and rate performance, outstanding energy density, simple fabrication, long-term stability, and remarkable reversibility have always been in high demand. Herein, a high-performance binder-free electrode (3D NiCuS/rGO) was fabricated as a supercapacitor by a simple electrodeposition process on a Ni foam (NF) surface. The thickness of the deposited materials on the NF surface was adjusted by applying a low cycle number of cyclic voltammetry (5 cycles) which produced a thin layer and thus enabled the easier penetration of electrolytes to promote electron and charge transfer. The NiCuS was anchored by graphene layers producing nicely integrated materials leading to a higher electroconductivity and a larger surface area electrode. The as-fabricated electrode displayed a high specific capacitance (2211.029 F g at 5 mV s). The NiCuS/rGO/NF//active carbon device can achieve a stable voltage window of 1.5 V with a highly specific capacitance of 84.3 F g at a current density of 1 A g. At a power density of 749 W kg, a satisfactory energy density of 26.3 W h kg was achieved, with outstanding coulombic efficiency of 100% and an admirable life span of 96.2% after 10 000 GCD cycles suggesting the significant potential of the as-prepared materials for practical supercapacitors.
具有卓越电容和倍率性能、出色能量密度、制备简单、长期稳定性以及显著可逆性的电化学储能器件一直备受需求。在此,通过在泡沫镍(NF)表面进行简单的电沉积工艺,制备了一种高性能的无粘结剂电极(3D NiCuS/rGO)作为超级电容器。通过施加低循环次数的循环伏安法(5次循环)来调整NF表面沉积材料的厚度,这会产生一层薄的材料层,从而使电解质更容易渗透,促进电子和电荷转移。NiCuS通过石墨烯层固定,形成了良好整合的材料,导致更高的电导率和更大表面积的电极。所制备的电极在5 mV s时显示出高比电容(2211.029 F g)。NiCuS/rGO/NF//活性炭器件在1 A g的电流密度下可实现1.5 V的稳定电压窗口,具有84.3 F g的高比电容。在749 W kg的功率密度下,实现了26.3 W h kg的令人满意的能量密度,具有100%的出色库仑效率,并且在10000次恒流充放电循环后具有96.2%的令人钦佩的寿命,这表明所制备的材料在实际超级电容器中具有巨大潜力。