Suppr超能文献

利用基于迁移学习的因果关系提取从生物医学文献中挖掘干燥综合征的潜在因素。

Using transfer learning-based causality extraction to mine latent factors for Sjögren's syndrome from biomedical literature.

作者信息

VanSchaik Jack T, Jain Palak, Rajapuri Anushri, Cheriyan Biju, Thyvalikakath Thankam P, Chakraborty Sunandan

机构信息

Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, 46202, IN, USA.

Indiana University School of Dentistry, Indianapolis, 46202, IN, USA.

出版信息

Heliyon. 2023 Aug 22;9(9):e19265. doi: 10.1016/j.heliyon.2023.e19265. eCollection 2023 Sep.

Abstract

Understanding causality is a longstanding goal across many different domains. Different articles, such as those published in medical journals, disseminate newly discovered knowledge that is often causal. In this paper, we use this intuition to build a model that leverages causal relations to unearth factors related to Sjögren's syndrome from biomedical literature. Sjögren's syndrome is an autoimmune disease affecting up to 3.1 million Americans. Due to the uncommon nature of the illness, symptoms across different specialties coupled with common symptoms of other autoimmune conditions such as rheumatoid arthritis, it is difficult for clinicians to diagnose the disease timely. Due to the lack of a dedicated dataset for causal relationships built from biomedical literature, we propose a transfer learning-based approach, where the relationship extraction model is trained on a wide variety of datasets. We conduct an empirical analysis of numerous neural network architectures and data transfer strategies for causal relation extraction. By conducting experiments with various contextual embedding layers and architectural components, we show that an ELECTRA-based sentence-level relation extraction model generalizes better than other architectures across varying web-based sources and annotation strategies. We use this empirical observation to create a pipeline for identifying causal sentences from literature text, extracting the causal relationships from causal sentences, and building a consisting of latent factors related to Sjögren's syndrome. We show that our approach can retrieve such factors with high precision and recall values. Comparative experiments show that this approach leads to 25% improvement in retrieval F1-score compared to several state-of-the-art biomedical models, including BioBERT and Gram-CNN. We apply this model to a corpus of research articles related to Sjögren's syndrome collected from PubMed to create a causal network for Sjögren's syndrome. The proposed causal network for Sjögren's syndrome will potentially help clinicians with a holistic knowledge base for faster diagnosis.

摘要

理解因果关系是许多不同领域长期以来的目标。不同的文章,比如发表在医学期刊上的那些,传播着往往具有因果关系的新发现知识。在本文中,我们利用这种直觉构建了一个模型,该模型利用因果关系从生物医学文献中挖掘与干燥综合征相关的因素。干燥综合征是一种自身免疫性疾病,影响着多达310万美国人。由于这种疾病性质不常见,不同专科的症状与类风湿关节炎等其他自身免疫性疾病的常见症状交织在一起,临床医生很难及时诊断这种疾病。由于缺乏从生物医学文献构建的用于因果关系的专用数据集,我们提出了一种基于迁移学习的方法,其中关系提取模型在各种各样的数据集上进行训练。我们对用于因果关系提取的众多神经网络架构和数据迁移策略进行了实证分析。通过使用各种上下文嵌入层和架构组件进行实验,我们表明基于ELECTRA的句子级关系提取模型在不同的基于网络的来源和注释策略中比其他架构具有更好的泛化能力。我们利用这一实证观察结果创建了一个管道,用于从文献文本中识别因果句子,从因果句子中提取因果关系,并构建一个由与干燥综合征相关的潜在因素组成的[此处原文缺失相关内容]。我们表明我们的方法能够以高精度和召回值检索此类因素。对比实验表明,与包括BioBERT和Gram-CNN在内的几种最先进的生物医学模型相比,这种方法在检索F1分数上提高了25%。我们将这个模型应用于从PubMed收集的与干燥综合征相关的研究文章语料库,以创建干燥综合征的因果网络。所提出的干燥综合征因果网络可能会帮助临床医生拥有一个整体知识库以便更快地进行诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/038c/10558331/ac74b74decfb/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验