Suppr超能文献

利用自然语言处理推动风湿病学发展:系统评价的见解与展望

Advancing rheumatology with natural language processing: insights and prospects from a systematic review.

作者信息

Omar Mahmud, Naffaa Mohammad E, Glicksberg Benjamin S, Reuveni Hagar, Nadkarni Girish N, Klang Eyal

机构信息

Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

Rheumatology Unit, Galilee Medical Center, Nahariya, Israel.

出版信息

Rheumatol Adv Pract. 2024 Sep 19;8(4):rkae120. doi: 10.1093/rap/rkae120. eCollection 2024.

Abstract

OBJECTIVES

Natural language processing (NLP) and large language models (LLMs) have emerged as powerful tools in healthcare, offering advanced methods for analysing unstructured clinical texts. This systematic review aims to evaluate the current applications of NLP and LLMs in rheumatology, focusing on their potential to improve disease detection, diagnosis and patient management.

METHODS

We screened seven databases. We included original research articles that evaluated the performance of NLP models in rheumatology. Data extraction and risk of bias assessment were performed independently by two reviewers, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to evaluate the risk of bias.

RESULTS

Of 1491 articles initially identified, 35 studies met the inclusion criteria. These studies utilized various data types, including electronic medical records and clinical notes, and employed models like Bidirectional Encoder Representations from Transformers and Generative Pre-trained Transformers. High accuracy was observed in detecting conditions such as RA, SpAs and gout. The use of NLP also showed promise in managing diseases and predicting flares.

CONCLUSION

NLP showed significant potential in enhancing rheumatology by improving diagnostic accuracy and personalizing patient care. While applications in detecting diseases like RA and gout are well developed, further research is needed to extend these technologies to rarer and more complex clinical conditions. Overcoming current limitations through targeted research is essential for fully realizing NLP's potential in clinical practice.

摘要

目的

自然语言处理(NLP)和大语言模型(LLMs)已成为医疗保健领域的强大工具,为分析非结构化临床文本提供了先进方法。本系统评价旨在评估NLP和LLMs在风湿病学中的当前应用,重点关注其在改善疾病检测、诊断和患者管理方面的潜力。

方法

我们筛选了七个数据库。纳入评估NLP模型在风湿病学中性能的原始研究文章。由两名审阅者按照系统评价和Meta分析的首选报告项目指南独立进行数据提取和偏倚风险评估。使用观察性队列和横断面研究质量评估工具来评估偏倚风险。

结果

在最初识别的1491篇文章中,35项研究符合纳入标准。这些研究使用了各种数据类型,包括电子病历和临床记录,并采用了如来自变换器的双向编码器表示和生成式预训练变换器等模型。在检测类风湿关节炎(RA)、脊柱关节炎(SpAs)和痛风等病症方面观察到了较高的准确性。NLP在疾病管理和预测病情发作方面也显示出前景。

结论

NLP在提高诊断准确性和个性化患者护理方面,在增强风湿病学方面显示出巨大潜力。虽然在检测RA和痛风等疾病方面的应用已经很成熟,但需要进一步研究将这些技术扩展到更罕见和更复杂的临床病症。通过有针对性的研究克服当前的局限性对于充分实现NLP在临床实践中的潜力至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9c4/11467191/10f6f62f8d21/rkae120f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验